clected by 17 2/6/17 #### **CETIFICATION** SDG No: JC34340 Humação, PR Laboratory: Accutest, New Jersey Site: BMS, Building 5 Area, PR Matrix: Groundwater **SUMMARY:** Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 20-22, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the parameters shown in Table 1. The results were reported under SDG No.: JC34340. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. Individual data review worksheets are enclosed for each target analyte group. The data sample summary form shows for analytes results that were qualified. In summary the results are valid and can be used for decision taking purposes. Table 1. Samples analyzed and analysis performed | SAMPLE ID | SAMPLE DESCRIPTION | MATRIX | ANALYSIS PERFORMED | |------------|--------------------|--------------------------|--| | JC34340-1 | MW-14 | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-2 | MVV-18 | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Inorganics; Methane | | JC34340-3 | FB122016 | AQ- Field Blank
Water | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-4 | EB122116 | AQ- Equipment
Blank | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-5 | TB122016NRB | AQ – Trip Blank
Water | VOCs | | JC34340-6 | TB122016RSB | AQ – Trip Blank
Water | VOCs | | JC34340-7 | BR-1 | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-8 | BR-1 DUP | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-9 | BR-2 | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Inorganics; Methane | | JC34340-10 | BR-3 | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-11 | BR-4 | Grondwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-12 | FB122116 | AQ- Field Blank
Water | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA | | JC34340-13 | TB122116NR | AQ – Trip Blank
Water | VOCs | | SAMPLE ID | SAMPLE
DESCRIPTION | MATRIX | ANALYSIS PERFORMED | |-------------|-----------------------|---------------------------|--| | JC34340-14 | TB122116RS | AQ – Trip Blank
Water | VOCs | | JC34340-15 | EB122216 | AQ- Equipment
Blank | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA; Pesticides | | JC34340-16 | RA-10D | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA; Pesticides | | JC34340-16D | RA-10D MSD | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA; Pesticides | | JC34340-16S | RA-10D MS | Groundwater | VOCs; SVOCs; PAHs + 1,4-Dioxane
(SIM); LMWA; Pesticides | | JC34340-17 | TB121616NRA | AQ – Trip Blank
water | VOCs | | JC34340-18 | MW-20S | Groundwater | Pesticides | | JC34340-19 | MW-20D | Groundwater | Pesticides | | JC34340-20 | RA-10S | Groundwater | Pesticides | | JC34340-21 | FB122216 | AQ – Field Blank
Water | Pesticides | 1600875 Reviewer Name: Rafael Infante Chemist License 1888 Signature: Date: January 28, 2017 Page 1 of 1 Client Sample ID: MW-14 Lab Sample ID: JC34340-1 Matrix: Method: AQ - Ground Water SW846 8260C Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Project: BMSMC, Building 5 Area, PR File ID DF By Prep Date **Prep Batch** Analyzed Run #1 4B68033.D 12/31/16 HT Analytical Batch V4B2796 n/a n/a Run #2 **Purge Volume** Run #1 5.0 ml Run #2 **MDL** CAS No. Compound Result RL Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 105% 76-120% 17060-07-0 1.2-Dichloroethane-D4 111% 73-122% 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 114% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 3 Client Sample ID: MW-14 Lab Sample ID: JC34340-1 Matrix: AQ - Ground Water Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 Q Date Received: 12/23/16 Percent Solids: n/a File ID DF By **Prep Date** Prep Batch **Analytical Batch** Analyzed CS Run #1 a 2M90222.D 12/28/16 12/27/16 OP99497 E2M4004 Run #2 Final Volume Initial Volume Run #1 980 ml 1.0 ml Run #2 **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|---------------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol ^a | ND | 5.1 | 0.84 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol a | ND | 5.1 | 0.91 | ug/l | | 120-83-2 | 2,4-Dichlorophenol ^a | ND | 2.0 | 1.3 | ug/l | | 105-67-9 | 2,4-Dimethylphenol a | ND | 5.1 | 2.5 | ug/l | | 51-28-5 | 2,4-Dinitrophenol a | ND | 10 | 1.6 | ug/l | | 534-52-1 | 4.6-Dinitro-o-cresol a | ND | 5.1 | 1.3 | ug/l | | 95-48-7 | 2-Methylphenol a | ND | 2.0 | 0.91 | ug/l | | | 3&4-Methylphenol a | ND | 2.0 | 0.90 | ug/l | | 88-75-5 | 2-Nitrophenol ^a | ND | 5.1 | 0.98 | ug/l | | 100-02-7 | 4-Nitrophenol ^a | ND | 10 | 1.2 | սջ/1 | | 87-86-5 | Pentachlorophenol a | ND | 4.1 | 1.4 | սջ/1 | | 108-95-2 | Phenol a | ND | 2.0 | 0.40 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol a | ND | 5.1 | 1.5 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol a | ND | 5.1 | 1.4 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol a | ND | 5.1 | 0.94 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.0 | 0.19 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.0 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.0 | 0.21 | ug/l | | 120-12-7 | Anthracene | ND | 1.0 | 0.22 | ug/l | | 1912-24-9 | Atrazine | ND | 2.0 | 0.46 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.1 | 0.29 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.0 | 0.21 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.0 | 0.22 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.0 | 0.35 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.0 | 0.41 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.0 | 0.47 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.0 | 0.22 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.0 | 0.24 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.1 | 0.35 | ug/l | | | | | | | - 44 | ND = Not detected 86-74-8 MDL = Method Detection Limit ND 1.0 0.23 RL = Reporting Limit E = Indicates value exceeds calibration range Carbazole J = Indicates an estimated value ug/l B = Indicates analyte found in associated method blank Client Sample ID: MW-14 Lab Sample ID: JC34340-1 Matrix: Method: Project: AQ - Ground Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 **Date Received:** 12/23/16 Percent Solids: n/a Q #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.0 | 0.66 | ug/l | | 218-01-9 | Chrysene | ND | 1.0 | 0.18 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.0 | 0.28 | ug/l | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.0 | 0.25 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.0 | 0.41 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.0 | 0.37 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.0 | 0.56 | ug/l | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.0 | 0.49 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.0 | 0.52 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.0 | 0.34 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.1 | 0.22 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.0 | 0.51 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.0 | 0.24 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.0 | 0.27 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.0 | 0.22 | ug/l | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.0 | 1.7 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.0 | 0.17 | ug/l | | 86-73-7 | Fluorene | ND | 1.0 | 0.17 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.0 | 0.33 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.0 | 0.50 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | 10 | 2.8 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.0 | 0.40 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.0 | 0.34 | ug/l | | 78-59-1 | Isophorone | ND | 2.0 | 0.28 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.0 | 0.27 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.0 | 0.21 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.1 | 0.28 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.1 | 0.39 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.1 | 0.45 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.0 | 0.66 | ug/l | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.0 | 0.49 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.1 | 0.23 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.0 | 0.18 | ug/l | | 129-00-0 | Pyrene | ND | 1.0 | 0.22 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.0 | 0.38 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | its | ND = Not detected 367-12-4 4165-62-2 MDL = Method Detection Limit 42% 27% RL = Reporting Limit 2-Fluorophenol Phenol-d5 E = Indicates value exceeds calibration range J = Indicates an estimated value 14-88% 10-110% B = Indicates analyte found in associated method blank Page 3 of 3 Client Sample ID: MW-14 Lab Sample ID: JC34340-1 Matrix: Method: AQ - Ground Water **Date Sampled:** 12/20/16 **Date Received:** 12/23/16 Percent Solids: n/a Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR #### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 77% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 62% | | 32-128% | | 321-60-8 |
2-Fluorobiphenyl | 70% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 86% | | 10-126% | (a) The acid spike standard was not added to the LCS. There is no sample left to reextract. MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis By SG Page 1 of 1 Client Sample ID: MW-14 Lab Sample ID: JC34340-1 File ID 3M67748.D Matrix: AQ - Ground Water DF SW846 8270D BY SIM SW846 3510C Analyzed 12/30/16 Date Received: 12/23/16 Q **Date Sampled:** 12/20/16 Prep Date 12/27/16 Percent Solids: n/a Method: Project: BMSMC, Building 5 Area, PR Prep Batch OP99497A **Analytical Batch** E3M3155 Run #1 Run #2 > Final Volume Initial Volume Run #1 980 ml Run #2 1.0 ml | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------|--------|---------|--------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.051 | 0.023 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND - | 0.051 | 0.034 | սբ/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.10 | 0.044 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.10 | 0.034 | ug/l | | 218-01-9 | Chrysene | ND | 0.10 | 0.027 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.10 | 0.037 | ug/i | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.10 | 0.039 | ug/l | | 91-20-3 | Naphthalene | ND | 0.10 | 0.030 | ug/l | | 123-91-1 | 1,4-Dioxane | 2.71 | 0.10 | 0.050 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | | | 4165-60-0 | Nitrobenzene-d5 | 83% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 72% | | 19-1 | 27% | | 1718-51-0 | Terphenyl-d14 | 65% | 10-119% | | 19% | ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value B = Indicates analyte found in associated method blank RL = Reporting Limit E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound 22 of 2441 Вy XPL Prep Date n/a Page 1 of 1 Client Sample ID: MW-14 Lab Sample ID: JC34340-1 File ID GH107979.D Matrix: AQ - Ground Water DF 1 SW846-8015C (DAI) Method: Project: Run #1 Run #2 BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 n/a Date Received: 12/23/16 Percent Solids: n/a **Analytical Batch** Prep Batch GGH5599 #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | Q | |----------|----------------------|--------|--------|------|-------|-----| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/i | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 102% | | 56-1 | 45% | | | 111-27-3 | Hexanol | 85% | | 56-1 | 45% | -00 | | | | | | | 10 11 | 120 | Analyzed 12/29/16 MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: Method: AQ - Ground Water Project: SW846 8260C BMSMC, Building 5 Area, PR Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | 4B68034.D | 1 | 12/31/16 | HT | n/a | n/a | V4B2796 | | Run #2 | | | | | | | | | | | Purge | Volume | |-----|----|--------|--------| | Run | #1 | 5.0 ml | | Run #2 | Compound | Result | RL | MDL | Units | Q | |-----------------------|--|--|---|---|--| | 1,3-Butadiene | ND | 5.0 | 0.17 | ug/l | | | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | Dibromofluoromethane | 107% | | 76-1 | 20% | | | 1,2-Dichloroethane-D4 | 113% | | 73-1 | 22% | | | Toluene-D8 | 98% | | 84-1 | 19% | | | 4-Bromofluorobenzene | 113% | | 78-1 | 17% | | | | 1,3-Butadiene Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 | 1,3-Butadiene ND Surrogate Recoveries Run# 1 Dibromofluoromethane 107% 1,2-Dichloroethane-D4 113% 70luene-D8 98% | 1,3-Butadiene ND 5.0 Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane 107% 1,2-Dichloroethane-D4 113% 70luene-D8 98% | 1,3-Butadiene ND 5.0 0.17 Surrogate Recoveries Run# 1 Run# 2 Lim Dibromofluoromethane 107% 76-1 1,2-Dichloroethane-D4 113% 73-1 Toluene-D8 98% 84-1 | 1,3-Butadiene ND 5.0 0.17 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 107% 76-120% 1,2-Dichloroethane-D4 113% 73-122% Toluene-D8 98% 84-119% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Q | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |----------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 a | 2M90392.D | 1 | 01/04/17 | SB | 12/27/16 | OP99497 | E2M4011 | | Run #2 | | | | | | | | |Run #2 **Initial Volume** Final Volume 990 ml 1.0 ml Run #1 Run #2 #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------------------|--------|-------|------|-------| | 95-57-8 | 2-Chlorophenol ^a | ND | 5.1 | 0.83 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol a | ND | 5.1 | 0.90 | ug/l | | 120-83-2 | 2,4-Dichlorophenol a | ND | 2.0 | 1.3 | ug/l | | 105-67-9 | 2,4-Dimethylphenol a | ND | 5.1 | 2.5 | ug/l | | 51-28-5 | 2,4-Dinitrophenol a | ND | 10 | 1.6 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol a | ND | 5.1 | 1.3 | ug/l | | 95-48-7 | 2-Methylphenol ^a | ND | 2.0 | 0.90 | ug/l | | | 3&4-Methylphenol a | ND | 2.0 | 0.89 | ug/l | | 88-75-5 | 2-Nitrophenol a | ND | 5.1 | 0.97 | ug/l | | 100-02-7 | 4-Nitrophenol a | ND | 10 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol a | ND | 4.0 | 1.4 | ug/l | | 108-95-2 | Phenol a | ND | 2.0 | 0.40 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol a | ND | 5.1 | 1.5 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol ⁿ | ND | 5.1 | 1.3 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol a | ND | 5.1 | 0.93 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.0 | 0.19 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.0 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.0 | 0.21 | ug/l | | 120-12-7 | Anthracene | ND | 1.0 | 0.21 | ug/l | | 1912-24-9 | Atrazine | ND | 2.0 | 0.45 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.1 | 0.29 | ug/1 | | 56-55-3 | Benzo(a)anthracene | ND | 1.0 | 0.21 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.0 | 0.22 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | = 1.0 | 0.21 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.0 | 0.34 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.0 | 0.41 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.0 | 0.46 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.0 | 0.21 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.0 | 0.24 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.1 | 0.34 | ug/l | | 86-74-8 | Carbazole | ND | 1.0 | 0.23 | ug/l | ND Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Method: Project: # Report of Analysis Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: SW846 8270D SW846 3510C AQ - Ground Water BMSMC, Building 5 Area, PR Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Q #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.0 | 0.66 | ug/l | | 218-01-9 | Chrysene | ND | 1.0 | 0.18 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.0 | 0.28 | ug/l | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.0 | 0.25 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.0 | 0.41 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.0 | 0.37 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.0 | 0.56 | ug/l | | 606-20-2 | 2,6-Dinitrotoluene | ND | 0.1 | 0.48 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.0 | 0.51 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.0 | 0.33 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.1 | 0.22 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.0 | 0.50 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.0 | 0.24 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.0 | 0.26 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.0 | 0.22 | ug/l | | 117-81-7 |
bis(2-Ethylhexyl)phthalate | ND | 2.0 | 1.7 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.0 | 0.17 | ug/l | | 86-73-7 | Fluorene | ND | 1.0 | 0.17 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.0 | 0.33 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.0 | 0.50 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | 10 | 2.8 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.0 | 0.39 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.0 | 0.34 | ug/l | | 78-59-1 | Isophorone | ND | 2.0 | 0.28 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.0 | 0.27 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.0 | 0.21 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.1 | 0.28 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.1 | 0.39 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.1 | 0.44 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.0 | 0.65 | ug/l | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.0 | 0.49 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.1 | 0.22 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.0 | 0.18 | ug/l | | 129-00-0 | Pyrene | ND | 1.0 | 0.22 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.0 | 0.37 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 367-12-4 | 2-Fluorophenol | 33% | | 14-8 | | | 4165-62-2 | Phenol-d5 | 21% | | 10-1 | 10% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: Method: Project: AQ - Ground Water **Date Sampled:** 12/20/16 **Date Received:** 12/23/16 SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Percent Solids: n/a #### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 72% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 58% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 64% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 75% | | 10-126% | (a) The acid spike standard was not added to the LCS. There is no sample left to reextract. ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value RL = Reporting Limit E = Indicates value exceeds calibration range B = Indicates analyte found in associated method blank # Report of Analysis By SG Prep Date 12/27/16 Page 1 of 1 Client Sample ID: MW-18 Lab Sample ID: JC34340-2 File ID 3M67749.D Matrix: AQ - Ground Water DF 1 Date Sampled: 12/20/16 Date Received: 12/23/16 E3M3155 Method: SW846 8270D BY SIM SW846 3510C Analyzed 12/30/16 Percent Solids: n/a OP99497A Q Project: BMSMC, Building 5 Area, PR **Analytical Batch** Prep Batch Run #1 Run #2 Initial Volume Final Volume 1.0 ml Run #1 990 ml Run #2 | CAS No. | Compound | Result | RL | MDL | Units | |----------|------------------------|--------|-------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.051 | 0.023 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.051 | 0.034 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.10 | 0.044 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.10 | 0.033 | ug/l | | 218-01-9 | Chrysene | ND | 0.10 | 0.026 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.10 | 0.037 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.10 | 0.038 | ug/l | | 91-20-3 | Naphthalene | ND | 0.10 | 0.030 | ug/l | | 123-91-1 | 1,4-Dioxane | ND | 0.10 | 0.049 | ug/l | | | | | | | | | CAS No. | Surrogate Recoveries | Kull# 1 | Run# 2 | Limits | |-----------|----------------------|---------|--------|---------| | 4165-60-0 | Nitrobenzene-d5 | 78% | | 24-125% | | 321-60-8 | 2-Fluorobiphenyl | 68% | | 19-127% | | 1718-51-0 | Terphenyl-d14 | 64% | | 10-119% | ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value RL = Reporting Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range # **Report of Analysis** Page 1 of 1 Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: Method: AQ - Ground Water Project: SW846-8015C (DAI) BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------|------------|----|----------|-----|-----------|------------|------------------| | Run #1 | GH107980.D | 1 | 12/29/16 | XPL | n/a | n/a | GGH5599 | | Run #2 | | | | | | | | #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | Q | |----------|----------------------|--------|--------|------|-------|---| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 97% | | 56-1 | 45% | 4 | | 111-27-3 | Hexanol | 79% | | 56-1 | 45% | 1 | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: Method: AQ - Ground Water RSK-175 Project: BMSMC, Building 5 Area, PR Date Sampled: 12/20/16 Q Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | AA56675.D | 1 | 12/30/16 | LM | n/a | n/a | GAA1104 | | Run #2 | | | | | | | | RL MDL Units CAS No. Compound Result 74-82-8 Methane 0.48 0.11 0.036 ug/l ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: AQ - Ground Water Date Sampled: 12/20/16 Percent Solids: n/a Date Received: 12/23/16 Project: BMSMC, Building 5 Area, PR **Total Metals Analysis** | Analyte | Result | RL | MDL | Units | DF | Prep | Analyzed By | Method | Prep Method | |-------------------|--------------|-----------|------------|--------------|----|------|-------------|--|--| | Iron
Manganese | 2130
74.7 | 100
15 | 12
0.39 | ug/l
ug/l | | | | SW846 6010C ¹
SW846 6010C ¹ | SW846 3010A ²
SW846 3010A ² | (1) Instrument QC Batch: MA41067 (2) Prep QC Batch: MP97875 Client Sample ID: MW-18 Lab Sample ID: JC34340-2 Matrix: AQ - Ground Water **Date Sampled:** 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Project: BMSMC, Building 5 Area, PR #### **General Chemistry** | Analyte | Result | RL | Units | DF | Analyzed | Ву | Method | |-----------------------------|--------|-------|-------|----|----------------|----|---------------------| | Alkalinity, Total as CaCO3 | 207 | 5.0 | mg/l | 1 | 12/28/16 21:50 | СВ | SM2320 B-11 | | Iron, Ferric ^a | 2.0 | 0.30 | mg/l | 1 | 12/29/16 22:23 | ND | SM3500FE B-11 | | Iron, Ferrous ^b | < 0.20 | 0.20 | mg/l | 1 | 12/24/16 12:48 | YR | SM3500FE B-11 | | Nitrogen, Nitrate c | 0.58 | 0.11 | mg/l | 1 | 01/03/17 12:49 | BM | EPA353,2/SM4500NO2B | | Nitrogen, Nitrate + Nitrite | 0.59 | 0.10 | mg/l | 1 | 01/03/17 12:49 | BM | EPA 353.2/LACHAT | | Nitrogen, Nitrite d | 0.015 | 0.010 | mg/l | 1 | 12/23/16 23:10 | HS | SM4500NO2 B-11 | | Sulfate | < 10 | 10 | mg/l | 1 | 01/07/17 06:13 | JN | EPA 300/SW846 9056A | | Sulfide | < 2.0 | 2.0 | mg/l | 1 | 12/27/16 10:48 | MP | SM4500S2- F-11 | Report of Analysis - (a) Calculated as: (Iron) (Iron, Ferrous) - (b) Field analysis required. Received out of hold time and analyzed by request. - (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time. - (d) Received and analyzed out of holding time. # Report of Analysis Page 1 of 1 Client Sample ID: FB122016 Lab Sample ID: JC34340-3 Matrix: AQ - Field Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Q. **Analytical Batch** File ID DF Analyzed By **Prep Date** Prep Batch V4B2796 Run #1 HT 4B68047.D 12/31/16 n/a n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 CAS No. Compound Result RL **MDL** Units 106-99-0 ND 5.0 1,3-Butadiene 0.17 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 106% 76-120% 1,2-Dichloroethane-D4 73-122% 17060-07-0 113% 2037-26-5 Toluene-D8 98% 84-119% 460-00-4 4-Bromofluorobenzene 115% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Client Sample ID: FB122016 Lab Sample ID: JC34340-3 Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C Project: Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Q BMSMC, Building 5 Area, PR | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |----------|-----------|----|----------|----|-----------|------------|------------------| | | M130548.D | 1 | 01/04/17 | KM | 12/27/16 | OP99497 | EM5577 | | Run #2 b | P110134.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | | Initial Volume | Final Volume | |--------|----------------|--------------| | Run #1 | 910 ml | 1.0 ml | | Run #2 | 925 ml | 1.0 ml | #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|---------------------------------|--------|-----|------|---------------| | 95-57-8 | 2-Chlorophenol ^a | ND | 5.5 |
0.90 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol a | ND | 5.5 | 0.98 | ug/l | | 120-83-2 | 2,4-Dichlorophenol ⁿ | ND | 2.2 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol ^a | ND | 5.5 | 2.7 | ug/l | | 51-28-5 | 2,4-Dinitrophenol a | ND | 11 | 1.7 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol a | ND | 5.5 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol ^a | ND | 2.2 | 0.98 | ug/l | | | 3&4-Methylphenol a | ND | 2.2 | 0.97 | ug/l | | 88-75-5 | 2-Nitrophenol ^a | ND | 5.5 | 1.1 | ug/l | | 100-02-7 | 4-Nitrophenol ^a | ND | 11 | 1.3 | ug/l | | 87-86-5 | Pentachlorophenol a | ND | 4.4 | 1.5 | ug/l | | 108-95-2 | Phenol ^a | ND | 2.2 | 0.43 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol a | ND | 5.5 | 1.6 | սջ/1 | | 95-95-4 | 2,4,5-Trichlorophenol a | ND | 5.5 | 1.5 | սք/l | | 88-06-2 | 2,4,6-Trichlorophenol a | ND | 5.5 | 1.0 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/l | | 98-86-2 | Acetophenone | ND | 2.2 | 0.23 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/l | | 1912-24-9 | Atrazine | ND | 2.2 | 0.49 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.5 | 0.32 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.37 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.44 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.50 | u <u>e</u> /1 | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.5 | 0.37 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value-exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: FB122016 Lab Sample ID: JC34340-3 Matrix: AQ - Field Blank Water SW846 8270D SW846 3510C Method: Project: BMSMC, Building 5 Area, PR Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | Q | |-----------|-----------------------------|--------|--------|------|-------|------------------| | 105-60-2 | Caprolactam | ND | 2.2 | 0.71 | ug/l | | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/1 | | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.31 | ug/l | | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.2 | 0.27 | ug/l | | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.2 | 0.44 | սց/1 | | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.40 | ug/l | | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.61 | ug/l | | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.52 | ug/l | | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.56 | ug/l | | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.36 | ug/l | | | 132-64-9 | Dibenzofuran | ND | 5.5 | 0.24 | ug/l | | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.55 | ug/l | | | 117-84-0 | Di-n-octyl phthalate | ND | 2.2 | 0.26 | ug/1 | | | 84-66-2 | Diethyl phthalate | ND | 2.2 | 0.29 | ug/l | | | 131-11-3 | Dimethyl phthalate | ND | 2.2 | 0.24 | ug/l | | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.2 | 1.8 | սջ/1 | | | 206-44-0 | Fluoranthene | ND | 1.1 | 0.19 | ug/l | | | 86-73-7 | Fluorene | ND | 1.1 | 0.19 | ug/l | | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.36 | ug/l | | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.54 | นg/1 | | | 77-47-4 | Hexachlorocyclopentadiene | ND | 11 | 3.1 | ug/l | | | 67-72-1 | Hexachloroethane | ND | 2.2 | 0.43 | ug/l | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.36 | ug/l | | | 78-59-1 | Isophorone | ND | 2.2 | 0.30 | ug/l | | | 90-12-0 | I-Methylnaphthalene | ND | 1.1 | 0.29 | ug/l | | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | | 88-74-4 | 2-Nitroaniline | ND | 5.5 | 0.30 | ug/l | | | 99-09-2 | 3-Nitroaniline | ND | 5.5 | 0.43 | ug/l | | | 100-01-6 | 4-Nitroaniline | ND | 5.5 | 0.48 | սջ/1 | ACCIANO. | | 98-95-3 | Nitrobenzene | ND | 2.2 | 0.71 | սջ/1 | all limited | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.53 | ug/l | 18 | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.5 | 0.24 | ug/l | fael Infante | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | Méndez 🚜 | | 129-00-0 | Pyrene | ND | 1.1 | 0.24 | ug/l | \ n IC # 1888 S | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.41 | ug/l | 100 | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | ACO LICENCINGO | | 367-12-4 | 2-Fluorophenol | 44% | 44% | 14-8 | | | | 4165-62-2 | Phenol-d5 | 28% | 29% | 10-1 | 10% | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: FB122016 Lab Sample ID: JC34340-3 AQ - Field Blank Water SW846 8270D SW846 3510C Date Sampled: 12/20/16 Date Received: 12/23/16 Percent Solids: n/a Method: Project: Matrix: BMSMC, Building 5 Area, PR #### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 93% | 91% | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 70% | 66% | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 71% | 75% | 35-119% | | 1718-51-0 | Terphenyl-d14 | 83% | 87% | 10-126% | - (a) The acid spike standard was not added to the LCS. Results are confirmed by reextraction outside the holding - (b) Confirmation run. E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound Page 1 of 1 Client Sample ID: FB122016 Lab Sample ID: JC34340-3 AQ - Field Blank Water Date Sampled: 12/20/16 Date Received: 12/23/16 Matrix: Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a Project: BMSMC, Building 5 Area, PR Run #1 File ID DF 3M67750.D 1 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Analyzed By 12/30/16 SG Prep Date 12/27/16 24-125% 19-127% 10-119% Prep Batch OP99497A Q Analytical Batch E3M3155 Run #2 Initial Volume Final Volume 910 ml Run #1 1.0 ml Run #2 4165-60-0 1718-51-0 321-60-8 | CAS No. | Compound | Result | RL | MDL | Units | |----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.055 | 0.025 | ug/I | | 50-32-8 | Benzo(a)pyrene | ND | 0.055 | 0.037 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.048 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.036 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.029 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.11 | 0.040 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.11 | 0.042 | ug/l | | 91-20-3 | Naphthalene | ND | 0.11 | 0.032 | ug/l | | 123-91-1 | 1,4-Dioxane | ND | 0.11 | 0.054 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | | | | | | 82% 68% 73% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: FB122016 Lab Sample ID: JC34340-3 Matrix: Method: AQ - Field Blank Water SW846-8015C (DAI) Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/20/16 Q Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|------------|----|----------|-----|-----------|------------|------------------| | Run #1 | GH107981.D | 1 | 12/29/16 | XPL | n/a | n/a | GGH5599 | | Run #2 | | | | | | | | #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | |----------|----------------------|--------|--------|------|-------| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | 71-36-3 | n-Butyl Alcohol | ND | 001 | 87 | ug/l | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 111-27-3 | Hexanol | 103% | | 56-1 | 45% | | 111-27-3 | Hexanol | 87% | | 56-1 | 45% | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: EB122116 Lab Sample ID: JC34340-4 Matrix: AQ - Field Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a File ID DF **Prep Date** Prep Batch **Analytical Batch** Analyzed By V4B2796 12/31/16 HT Run #1 4B68048.D 1 n/a n/a Run #2 **Purge Volume** Run #1 Run #2 CAS No. 106-99-0 5.0 ml MDL RL Units Q Compound Result 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 107% 76-120% 1,2-Dichloroethane-D4 115% 73-122% 17060-07-0 84-119% 2037-26-5 Toluene-D8 98% 460-00-4 4-Bromofluorobenzene 115% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank By AN 12/28/16 Page 1 of 3 Client Sample ID: EB122116 Lab Sample ID: JC34340-4 File ID 2M90361.D Matrix: Method: Project: AQ - Field Blank Water DF 1 SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Analyzed 01/03/17 **Date Sampled:** 12/21/16 Date Received: 12/23/16 E2M4010 Percent Solids: n/a OP99513 Q **Prep Batch Analytical Batch** Prep Date Run #1 Run #2 > Initial Volume Final
Volume 960 ml 1.0 ml Run #1 Run #2 **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.2 | 0.85 | ug/i | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.2 | 0.93 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.1 | 1.3 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.2 | 2.5 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 10 | 1.6 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.2 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.1 | 0.93 | սց/I | | | 3&4-Methylphenol | ND | 2.1 | 0.92 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.2 | 1.0 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 10 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.2 | 1.4 | ug/l | | 108-95-2 | Phenol | ND | 2.1 | 0.41 | սք/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.2 | 1.5 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.2 | 1.4 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.2 | 0.96 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.0 | 0.20 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.0 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.1 | 0.22 | ug/l | | 120-12-7 | Anthracene | ND | 1.0 | 0.22 | ug/l | | 1912-24-9 | Atrazine | ND | 2.1 | 0.47 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.2 | 0.30 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.0 | 0.21 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.0 | 0.22 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.0 | 0.36 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.1 | 0.42 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.1 | 0.48 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.0 | 0.22 | ug/i | | 91-58-7 | 2-Chloronaphthalene | ND | 2.1 | 0.25 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.2 | 0.35 | ug/l | | 86-74-8 | Carbazole | ND | 1.0 | 0.24 | ug/l | fuel Infant Méndez IC # 1881 ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: EB122116 Lab Sample ID: JC34340-4 Matrix: AQ - Field Blank Water SW846 8270D SW846 3510C Method: Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q Project: BMSMC, Building 5 Area, PR #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.1 | 0.68 | ug/l | | 218-01-9 | Chrysene | ND | 1.0 | 0.18 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.1 | 0.29 | ug/l | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.1 | 0.26 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.1 | 0.42 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.1 | 0.38 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.0 | 0.58 | ug/l | | 606-20-2 | 2.6-Dinitrotoluene | ND | 1.0 | 0.50 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.1 | 0.53 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.0 | 0.34 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.2 | 0.23 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.1 | 0.52 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.1 | 0.24 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.1 | 0.27 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.1 | 0.23 | ug/i | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.1 | 1.7 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.0 | 0.18 | ug/l | | 86-73-7 | Fluorene | ND | 1.0 | 0.18 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.0 | 0.34 | ug/l | | 87-68-3 | l·lexachlorobutadiene | ND | 1.0 | 0.51 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | 10 | 2.9 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.1 | 0.41 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.0 | 0.35 | ug/l | | 78-59-1 | Isophorone | ND | 2.1 | 0.29 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.0 | 0.27 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.0 | 0.22 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.2 | 0.29 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.2 | 0.40 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.2 | 0.46 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.1 | 0.67 | ug/i | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.1 | 0.50 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.2 | 0.23 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.0 | 0.18 | ug/l | | 129-00-0 | Pyrene | ND | 1.0 | 0.23 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.1 | 0.39 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | its | | 367-12-4 | 2-Fluorophenol | 41% | | 14-8 | 8% | | | | - 404 | | | 1001 | 26% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit 4165-62-2 E = Indicates value exceeds calibration range Phenol-d5 J = Indicates an estimated value 10-110% B = Indicates analyte found in associated method blank Page 3 of 3 Client Sample ID: EB122116 Lab Sample ID: JC34340-4 AQ - Field Blank Water Method: Project: Matrix: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a #### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 81% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 64% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 71% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 92% | | 10-126% | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value By SG 12/28/16 Page 1 of 1 Client Sample ID: EB122116 Lab Sample ID: JC34340-4 AQ - Field Blank Water DF Date Sampled: 12/21/16 Date Received: 12/23/16 E4M3179 Matrix: Method: SW846 8270D BY SIM SW846 3510C Analyzed 12/29/16 Percent Solids: n/a OP99513A Q Project: BMSMC, Building 5 Area, PR **Prep Date** Prep Batch **Analytical Batch** Run #1 Run #2 > Final Volume Initial Volume 960 ml File ID 4M69349.D Run #1 Run #2 1.0 ml | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.052 | 0.024 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.052 | 0.035 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.10 | 0.045 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.10 | 0.034 | ug/l | | 218-01-9 | Chrysene | ND | 0.10 | 0.027 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.10 | 0.038 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.10 | 0.040 | սք/1 | | 91-20-3 | Naphthalene | ND | 0.10 | 0.031 | ug/l | | 123-91-1 | 1,4-Dioxane | ND | 0.10 | 0.051 | ug/1 | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 4165-60-0 | Nitrobenzene-d5 | 59% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 63% | | 19-1 | 27% | | 1718-51-0 | Terphenyl-d14 | 87% | | 10-1 | 19% | ND Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: EB122116 Lab Sample ID: JC34340-4 Matrix: Method: AQ - Field Blank Water SW846-8015C (DAI) Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Q Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|------------|----|----------|-----|-----------|------------|------------------| | Run #1 | GH107982.D | 1 | 12/29/16 | XPL | n/a | n/a | GGH5599 | | Run #2 | | | | | | | | #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | |----------|----------------------|--------|--------|------|-------| | | | | | | | | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | | | | | - | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | | | | | | | 111-27-3 | Hexanol | 100% | | 56-1 | 45% | | 111-27-3 | Hexanol | 85% | | 56-1 | 45% | | , _ | n o westward wen | 3270 | | 20 . | | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Page 1 of 1 Client Sample ID: TB122016NRB Lab Sample ID: JC34340-5 Matrix: AQ - Trip Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | 4B68049.D | 1 | 12/31/16 | HT | n/a | n/a | V4B2796 | | Run #2 | | | | | | | | | Run #1
Run #2 | Purge Volume
5.0 ml | | | | | | | | |------------------|------------------------|--------|----|-----|-------|---|--|--| | CAS No. | Compound | Result | RL | MDL | Units | Q | | | | 106-99-0 | 1,3-Butadiene | ND | 5.0 | 0.17 ug/l | |------------|-----------------------|--------|--------|-----------| | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | | 1868-53-7 | Dibromofluoromethane | 107% | | 76-120% | | 17060-07-0 | 1,2-Dichloroethane-D4 | 115% | | 73-122% | | 2037-26-5 | Toluene-D8 | 99% | | 84-119% | | 460-00-4 | 4-Bromofluorobenzene | 116% | | 78-117% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1
of 1 Client Sample ID: TB122016RSD Lab Sample ID: JC34340-6 Matrix: AQ - Trip Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a File ID DF Ву Prep Date Prep Batch **Analytical Batch** Analyzed Run #1 4B68065.D V4B2797 1 01/03/17 HT n/a n/a Run #2 Purge Volume 1,3-Butadiene Toluene-D8 **Surrogate Recoveries** Dibromofluoromethane 1.2-Dichloroethane-D4 4-Bromofluorobenzene Run #1 Run #2 CAS No. 106-99-0 CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4 5.0 ml Compound Result RL MDL Units Q ug/l ND 5.0 Run#1 Run# 2 0.17 Limits 76-120% 73-122% 84-119% 78-117% 103% 107% 97% 115% fact Infla Méndez IC # 188 ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: BR-1 Lab Sample ID: JC34340-7 Matrix: Method: AQ - Ground Water SW846 8260C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | 4B68035.D | 1 | 12/31/16 | HT | n/a | n/a | V4B2796 | Run #2 Purge Volume Run #1 5.0 ml Run #2 MDL Q CAS No. Compound Result RL Units 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits Dibromofluoromethane 105% 76-120% 1868-53-7 1,2-Dichloroethane-D4 17060-07-0 113% 73-122% 2037-26-5 Toluene-D8 98% 84-119% 460-00-4 4-Bromofluorobenzene 110% 78-117% Méndez IC # 1881 MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ### **Report of Analysis** Page 1 of 3 Client Sample ID: BR-1 Lab Sample ID: JC34340-7 Matrix: AQ - Ground Water Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | 2M90299,D | I | 12/30/16 | CS | 12/28/16 | OP99513 | E2M4007 | | Run #2 | M130549.D | 2 | 01/04/17 | KM | 12/28/16 | OP99513 | EM5577 | | | Initial Volume | Final Volume | |--------|----------------|--------------| | Run #1 | 1000 ml | 1.0 ml | | | | | | Run #2 | 1000 ml | 1.0 ml | #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.0 | 0.82 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.0 | 0.89 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.0 | 1.3 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.0 | 2.4 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 10 | 1.6 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.0 | 1.3 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.0 | 0.89 | ug/l | | | 3&4-Methylphenol | ND | 2.0 | 0.88 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.0 | 0.96 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 10 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.0 | 1.4 | ug/l | | 108-95-2 | Phenol | ND | 2.0 | 0.39 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.0 | 1.5 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.0 | 1.3 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.0 | 0.92 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.0 | 0.19 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.0 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.0 | 0.21 | ug/l | | 120-12-7 | Anthracene | ND | 1.0 | 0.21 | ug/l | | 1912-24-9 | Atrazine | ND | 2.0 | 0.45 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.0 | 0.29 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.0 | 0.20 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.0 | 0.21 | ug/i | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.0 | 0.34 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.0 | 0.21 | սք/1 | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.0 | 0.40 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.0 | 0.46 | ug/l | | 92-52-4 | 1,1'-Biphenyl | ND | 1.0 | 0.21 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.0 | 0.24 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.0 | 0.34 | ug/l | | 86-74-8 | Carbazole | ND | 1.0 | 0.23 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank #### Page 2 of 3 Client Sample ID: BR-1 Lab Sample ID: JC34340-7 Matrix: AQ - Ground Water SW846 8270D SW846 3510C Method: Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | i Q | |-----------|-----------------------------|--------|--------|------|-------|---------------------| | 105-60-2 | Caprolactam | ND | 2.0 | 0.65 | ug/l | | | 218-01-9 | Chrysene | ND | 1.0 | 0.18 | ug/l | | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.0 | 0.28 | ug/l | | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.0 | 0.25 | ug/l | | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.0 | 0.40 | ug/l | | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.0 | 0.37 | ug/l | | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.0 | 0.55 | ug/l | | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.0 | 0.48 | ug/l | | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.0 | 0.51 | ug/l | | | 123-91-1 | 1,4-Dioxane | 105 a | 2.0 | 1.3 | ug/l | | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.0 | 0.33 | ug/l | | | 132-64-9 | Dibenzofuran | ND | 5.0 | 0.22 | ug/l | | | 84-74-2 | Di-n-butyl phthalate | ND | 2.0 | 0.50 | ug/l | | | 117-84-0 | Di-n-octyl phthalate | ND | 2.0 | 0.23 | ug/l | | | 84-66-2 | Diethyl phthalate | ND | 2.0 | 0.26 | ug/l | | | 131-11-3 | Dimethyl phthalate | ND | 2.0 | 0.22 | ug/! | | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.0 | 1.7 | ug/l | | | 206-44-0 | Fluoranthene | 0.54 | 1.0 | 0.17 | ug/l | J | | 86-73-7 | Fluorene | ND | 1.0 | 0.17 | ug/l | | | 118-74-1 | Hexachlorobenzene | ND | 1.0 | 0.33 | ug/l | | | 87-68-3 | Hexachlorobutadiene | ND | 1.0 | 0.49 | ug/l | | | 77-47-4 | Hexachlorocyclopentadiene | ND | 10 | 2.8 | ug/l | | | 67-72-1 | Hexachloroethane | ND | 2.0 | 0.39 | ug/l | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.0 | 0.33 | ug/l | | | 78-59-1 | Isophorone | ND | 2.0 | 0.28 | ug/l | | | 90-12-0 | 1-Methylnaphthalene | ND | 1.0 | 0.26 | ug/l | | | 91-57-6 | 2-Methylnaphthalene | ND | 1.0 | 0.21 | ug/l | | | 88-74-4 | 2-Nitroaniline | ND | 5.0 | 0.28 | ug/l | NOCHADO ON | | 99-09-2 | 3-Nitroaniline | ND | 5.0 | 0.39 | ug/l | Ser Park | | 100-01-6 | 4-Nitroaniline | ND | 5.0 | 0.44 | ug/l | | | 98-95-3 | Nitrobenzene | ND | 2.0 | 0.64 | ug/l | fuel Infante | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.0 | 0.48 | ug/l | Méndez
IC # 1888 | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.0 | 0.22 | ug/l | IC # 1888) | | 85-01-8 | Phenanthrene | ND | 1.0 | 0.18 | ug/l | 10/ | | 129-00-0 | Pyrene | ND | 1.0 | 0.22 | ug/l | Mc | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.0 | 0.37 | ug/l | LINCO LICENCINO | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | | | | | | | | Report of Analysis ND = Not detected 367-12-4 MDL = Method Detection Limit 42% 40% RL = Reporting Limit E = Indicates value exceeds calibration range 2-Fluorophenol J = Indicates an estimated value 14-88% B = Indicates analyte found in associated method blank Lab Sample ID: JC34340-7 Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a #### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 4165-62-2 | Phenol-d5 | 30% | 28% | 10-110% | | 118-79-6 | 2,4,6-Tribromophenol | 89% | 104% | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 61% | 69% | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 72% | 75% | 35-119% | | 1718-51-0 | Terphenyl-d14 | 71% | 69% | 10-126% | (a) Result is from Run# 2 MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ### Report of Analysis By SG Prep Date 12/28/16 Page I of I Client Sample ID: BR-1 Lab Sample ID: JC34340-7 File ID 4M69350.D Matrix: AQ - Ground Water DF 1 Method: Project: SW846 8270D BY SIM SW846 3510C Analyzed 12/29/16 BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a OP99513A Q Prep Batch **Analytical Batch** E4M3179 Run #1 Run #2 > Initial Volume Final Volume Run #1 1000 ml Run #2 1.0 ml | CAS No. | Compound | Result | RL | MDL | Units | |----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.050 | 0.023 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.050 | 0.033 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.10 | 0.043 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.10 | 0.033 | ug/l | | 218-01-9 | Chrysene | ND | 0.10 | 0.026 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.10 | 0.036 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.10 | 0.038 | ug/l | | 91-20-3 | Naphthalene | ND | 0.10 | 0.029 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | G | | | |-----------|------------------|-----|---------| | 4165-60-0 | Nitrobenzene-d5 | 57% | 24-125% | | 321-60-8 | 2-Fluorobiphenyl | 63% | 19-127% | | 1718-51-0 | Ternhenyl-d14 | 71% | 10-119% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds
calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: BR-1 Lab Sample ID: JC34340-7 Matrix: AQ - Ground Water Method: Project: SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a | | | | | | <u>'</u> | | | |--------|------------|----|----------|-----|-----------|------------|-------------------------| | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | | Run #1 | GH107983.D | 1 | 12/29/16 | XPL | n/a | n/a | GGH5599 | | Run #2 | | | | | | | | | CAS No. | Compound | Result | RL | MDL | Units | Q | |----------|----------------------|--------|--------|------|---------------|----| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | u <u>g</u> /1 | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 84% | | 56-1 | 45% | | | 111-27-3 | Hexanol | 79% | | 56-1 | 45% | 19 | E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound ### Report of Analysis Page 1 of 1 Client Sample ID: BR-1 DUP Lab Sample ID: JC34340-8 Matrix: AQ - Ground Water Method: SW846 8260C Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Project: BMSMC, Building 5 Area, PR File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 4B68036.D 12/31/16 HT n/a n/a V4B2796 Run #2 **Purge Volume** 5.0 ml Run #1 Run #2 CAS No. Compound Result RL MDL Units Q 106-99-0 ND 5.0 0.17 1.3-Butadiene ug/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits Dibromofluoromethane 105% 76-120% 1868-53-7 17060-07-0 1,2-Dichloroethane-D4 114% 73-122% 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 108% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 3 Client Sample ID: BR-1 DUP Lab Sample ID: JC34340-8 Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|-------------------------| | Run #1 | 5P34334.D | 1 | 12/30/16 | SB | 12/28/16 | OP99514 | E5P1725 | | Run #2 | 5P34357.D | 5 | 12/30/16 | AC | 12/28/16 | OP99514 | E5P1726 | | | Initial Volume | Final Volume | |--------|----------------|--------------| | Run #1 | 910 ml | 1.0 ml | | Run #2 | 910 ml | 1.0 ml | #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | Q | |-----------|----------------------------|--------|-----|------|-------|---| | 95-57-8 | 2-Chlorophenol | ND | 5.5 | 0.90 | ug/l | | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.5 | 0.98 | ug/l | | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.2 | 1.4 | ug/l | | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.5 | 2.7 | ug/l | | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.7 | ug/l | | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.5 | 1.4 | ug/l | | | 95-48-7 | 2-Methylphenol | ND | 2.2 | 0.98 | ug/l | | | | 3&4-Methylphenol | ND | 2.2 | 0.97 | ug/l | | | 88-75-5 | 2-Nitrophenol | ND | 5.5 | 1.1 | ug/l | | | 100-02-7 | 4-Nitrophenol | ND | 11 | 1.3 | ug/l | | | 87-86-5 | Pentachlorophenol | ND | 4.4 | 1.5 | ug/l | | | 108-95-2 | Phenol | ND | 2.2 | 0.43 | ug/l | | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.5 | 1.6 | ug/l | | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.5 | 1.5 | ug/l | | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.5 | 1.0 | ug/l | | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/l | | | 98-86-2 | Acetophenone | ND | 2.2 | 0.23 | ug/l | | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/l | | | 1912-24-9 | Atrazine | ND | 2.2 | 0.49 | ug/l | | | 100-52-7 | Benzaldehyde | ND | 5.5 | 0.32 | ug/l | | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | ug/l | | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.23 | ug/l | | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.37 | ug/l | | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.23 | ug/l | | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.44 | ug/l | | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.50 | ug/l | | | 92-52-4 | 1,1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | | 106-47-8 | 4-Chloroaniline | 1.5 | 5.5 | 0.37 | ug/l | J | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-1 DUP Lab Sample ID: JC34340-8 Matrix: AQ - Ground Water Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q J #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-------------------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.2 | 0.71 | ug/l | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/l | | 111 - 91-1 | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.31 | ug/l | | 111-44-4 | bis(2-Chloroethyi)ether | ND | 2.2 | 0.27 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.2 | 0.44 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.40 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.61 | ug/l | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.52 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.56 | ug/l | | 123-91-1 | 1,4-Dioxane | 220 a | 5.5 | 3.6 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.36 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.5 | 0.24 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.55 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.2 | 0.26 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.2 | 0.29 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.2 | 0.24 | ug/l | | 117-81-7 | bis(2-Ethylhexyl)phthalate | 3.8 | 2.2 | 1.8 | ug/l | | 206-44-0 | Fluoranthene | 0.50 | 1.1 | 0.19 | ug/I | | 86-73-7 | Fluorene | ND | 1.1 | 0.19 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.36 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.54 | ug/i | | 77-47-4 | Hexachlorocyclopentadiene | ND | 11 | 3.1 | սք/1 | | 67-72-1 | Hexachloroethane | ND | 2.2 | 0.43 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.36 | ug/l | | 78-59-1 | Isophorone | ND | 2.2 | 0.30 | սց/1 | | 90-12-0 | I-Methylnaphthalene | ND | 1.1 | 0.29 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.5 | 0.30 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.5 | 0.43 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.5 | 0.48 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.2 | 0.71 | ug/l | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.53 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.5 | 0.24 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | | 129-00-0 | Pyrene | ND | 1.1 | 0.24 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.41 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | | | | | 22.0 | ND = Not detected MDL = Method Detection Limit 59% 59% RL = Reporting Limit 367-12-4 E = Indicates value exceeds calibration range 2-Fluorophenol J = Indicates an estimated value 14-88% B = Indicates analyte found in associated method blank Client Sample ID: BR-1 DUP Lab Sample ID: JC34340-8 Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 **Date Received:** 12/23/16 Percent Solids: n/a ### ABN TCL Special List | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 4165-62-2 | Phenol-d5 | 40% | 40% | 10-110% | | 118-79-6 | 2,4,6-Tribromophenol | 86% | 89% | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 77% | 77% | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 77% | 80% | 35-119% | | 1718-51-0 | Terphenyl-d14 | 77% | 78% | 10-126% | (a) Result is from Run# 2 ND = Not detected RL = Reporting Limit J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound MDL = Method Detection Limit By SG JC34340-8 **Date Sampled:** 12/21/16 Matrix: AQ - Ground Water Date Received: 12/23/16 Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a Project: BMSMC, Building 5 Area, PR Run #1 File ID 3M67737.D Analyzed 12/30/16 Prep Date 12/28/16 10-119% Prep Batch OP99514A **Analytical Batch** E3M3154 Run #2 Initial Volume Compound Terphenyl-d14 Final Volume DF 1 910 ml 1.0 ml Run #1 Run #2 CAS No. 1718-51-0 Result RL MDL Units Q | 56-55-3 | Benzo(a)anthracene | ND | 0.055 | 0.025 | ug/l | |----------|----------------------|----|-------|-------|------| | 50-32-8 | Benzo(a)pyrene | ND | 0.055 | 0.037 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.048 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.036 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.029 | ug/l | | 207-08-9 | Benzo(K)Huorantnene | ND | 0.11 | 0.030 | ug/ i | |----------|------------------------|----|------|-------|-------| | 218-01-9 | Chrysene | ND | 0.11 | 0.029 | ug/l | | 53-70-3 |
Dibenzo(a,h)anthracene | ND | 0.11 | 0.040 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.11 | 0.042 | ug/l | | 91-20-3 | Naphthalene | ND | 0.11 | 0.032 | ug/l | | | | | | | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 4165-60-0 | Nitrobenzene-d5 | 80% | | 24-125% | | 321-60-8 | 2-Fluorobiphenyl | 73% | | 19-127% | 70% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: BR-1 DUP Lab Sample ID: JC34340-8 Matrix: AQ - Ground Water Method: SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By GGH5599 GH107984.D 12/29/16 **XPL** Run #1 1 n/a n/a Run #2 Project: #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | Q | |----------|----------------------|--------|--------|------|-------|---| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 66% | | 56-1 | 45% | | | 111-27-3 | Hexanol | 61% | | 56-1 | 45% | | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: BR-2 Lab Sample ID: JC34340-9 Matrix: AQ - Ground Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 12/23/16 Date Received: Percent Solids: n/a File ID **Analytical Batch** DF Analyzed By **Prep Date** Prep Batch V4B2796 Run #1 4B68038.D 1 12/31/16 HT n/a n/a Run #2 **Purge Volume** Run #1 5.0 ml Run #2 MDL CAS No. Compound Result RL Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l **Surrogate Recoveries** CAS No. Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 107% 76-120% 1,2-Dichloroethane-D4 73-122% 17060-07-0 112% 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 78-117% 105% MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank By SB **Prep Date** 12/28/16 Page 1 of 3 Client Sample ID: BR-2 Lab Sample ID: JC34340-9 File ID 5P34335.D Matrix: AQ - Ground Water DF Date Received: 12/23/16 Date Sampled: 12/21/16 Method: SW846 8270D SW846 3510C Percent Solids: n/a Project: BMSMC, Building 5 Area, PR **Analyzed** 12/30/16 OP99514 Q **Prep Batch Analytical Batch** E5P1725 Run #1 Run #2 > **Initial Volume** Final Volume Run #1 940 ml 1.0 ml Run #2 #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.3 | 0.87 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.3 | 0.95 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.1 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.3 | 2.6 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.6 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.3 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.1 | 0.94 | ug/l | | | 3&4-Methylphenol | ND | 2.1 | 0.94 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.3 | 1.0 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 11 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.3 | 1.5 | ug/l | | 108-95-2 | Phenol | ND | 2.1 | 0.42 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.3 | 1.6 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.3 | 1.4 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.3 | 0.98 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.20 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.1 | 0.22 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.22 | ug/l | | 1912-24-9 | Atrazine | ND | 2.1 | 0.48 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.3 | 0.31 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.22 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.36 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.22 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.1 | 0.43 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.1 | 0.49 | ug/l | | 92-52-4 | 1,1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.1 | 0.25 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.3 | 0.36 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.24 | ug/i | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-2 Lab Sample ID: JC34340-9 Matrix: Method: Project: AQ - Ground Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Report of Analysis **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|-----|------|-------| | 105-60-2 | Caprolactam | ND | 2.1 | 0.69 | ug/l | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.1 | 0.30 | սք/1 | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.1 | 0.26 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.1 | 0.43 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.1 | 0.39 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.59 | սք/1 | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.51 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.1 | 0.54 | ug/l | | 123-91-1 | 1,4-Dioxane | 19.3 | 1.1 | 0.70 | սք/1 | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.35 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.3 | 0.23 | սք/1 | | 84-74-2 | Di-n-butyl phthalate | ND | 2.1 | 0.53 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.1 | 0.25 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.1 | 0.28 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.1 | 0.23 | ug/l | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.1 | 1.8 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.1 | 0.18 | ug/l | | 86-73-7 | Fluorene | ND | 1.1 | 0.18 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.35 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.52 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | 11 | 3.0 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.1 | 0.41 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.35 | ug/l | | 78-59-1 | Isophorone | ND | 2.1 | 0.29 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.1 | 0.28 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.22 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.3 | 0.29 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.3 | 0.41 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.3 | 0.47 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.1 | 0.68 | ug/l | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.1 | 0.51 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.3 | 0.24 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | | 129-00-0 | Pyrene | ND | 1.1 | 0.23 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.1 | 0.39 | ug/l | CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 14-88% 43% 367-12-4 2-Fiuorophenol ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank -8---- Client Sample ID: BR-2 Lab Sample ID: JC34340-9 Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 **Date Received:** 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 4165-62-2 | Phenol-d5 | 29% | | 10-110% | | 118-79-6 | 2,4,6-Tribromophenol | 71% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 57% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 59% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 71% | | 10-126% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ### Report of Analysis Page 1 of 1 Client Sample ID: BR-2 Date Sampled: Lab Sample ID: JC34340-9 Date Received: 12/21/16 Matrix: Method: AQ - Ground Water SW846 8270D BY SIM SW846 3510C 12/23/16 Project: BMSMC, Building 5 Area, PR Percent Solids: n/a Q ug/l ug/l Run #1 DF 1 By SG Analyzed 12/30/16 Prep Date 12/28/16 Prep Batch OP99514A **Analytical Batch** E3M3154 Run #2 Initial Volume 940 ml File ID 3M67733.D Compound Final Volume 1.0 ml Run #1 Run #2 CAS No. RL MDL Result Units | 56-55-3 | Benzo(a)anthracene | ND | 0.053 | 0.024 | |----------|----------------------|----|-------|-------| | 50-32-8 | Benzo(a)pyrene | ND | 0.053 | 0.035 | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.046 | | | | | | | ug/l 207-08-9 ND 0.035Benzo(k)fluoranthene 0.11 ug/l 218-01-9 Chrysene ND 0.11 0.028ug/l 53-70-3 Dibenzo(a,h)anthracene ND 0.11 0.039ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 0.11 0.040ug/l 91-20-3 0.11 0.031 Naphthalene ND ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 56% 24-125% 321-60-8 2-Fluorobiphenyl 55% 19-127% 10-119% 1718-51-0 Terphenyl-d14 63% fuel
Infan Méndez IC # 188 ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Client Sample ID: BR-2 JC34340-9 Lab Sample ID: Matrix: AQ - Ground Water Method: Project: SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Q Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|------------|----|----------|-----|-----------|------------|------------------| | Run #1 | GH107985.D | 1 | 12/29/16 | XPL | n/a | n/a | GGH5599 | | Run #2 | | | | | | | | #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | |----------|----------------------|--------|--------|-------|-------| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | its | | 111-27-3 | Hexanol | 76% | | 56-1- | 45% | | 111-27-3 | Hexanol | 73% | | 56-1 | 45% | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Page 1 of 1 Client Sample ID: BR-2 Lab Sample ID: JC34340-9 Matrix: AQ - Ground Water Method: **RSK-175** Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Q Percent Solids: n/a By File ID DF Analyzed **Prep Date Prep Batch Analytical Batch** Run #1 AA56676.D 12/30/16 LM **GAA1104** 1 n/a n/a Run #2 74-82-8 CAS No. Compound Methane Result 4.0 RL 0.11 MDL 0.036 Units ug/l MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank AQ - Ground Water **Date Sampled:** 12/21/16 Percent Solids: n/a Date Received: 12/23/16 Project: BMSMC, Building 5 Area, PR **Total Metals Analysis** | Analyte | Result | RL | MDL | Units | DF | Prep | Analyzed By | Method | Prep Method | |-------------------|-------------|-----------|------------|--------------|----|------|-------------|--|-------------| | Iron
Manganese | 3320
166 | 100
15 | 12
0.39 | ug/l
ug/l | | | | SW846 6010C ¹
SW846 6010C ¹ | | (1) Instrument QC Batch: MA41067 (2) Prep QC Batch: MP97875 Client Sample ID: BR-2 Lab Sample ID: JC34340-9 Matrix: AQ - Ground Water Date Sampled: 12/21/16 Date Received: 12/23/16 > fael Infants Méndez Percent Solids: n/a Project: BMSMC, Building 5 Area, PR #### **General Chemistry** | Analyte | Result | RL | Units | DF | Analyzed | Ву | Method | |---|------------------|-------|--------------|--------|----------------------------------|----|--------------------------------------| | Alkalinity, Total as CaCO3 | 289 | 5.0 | mg/l | 1 | 12/30/16 16:59 | | SM2320 B-11 | | Iron, Ferric a | 3.3 | 0.30 | mg/l | l · | 12/29/16 22:26 | | SM3500FE B-11 | | Iron, Ferrous ^b Nitrogen, Nitrate ^c | < 0.20
< 0.11 | 0.20 | mg/l | l
I | 12/24/16 12:48
01/03/17 12:51 | | SM3500FE B-11
EPA353 2/SM4500NO2B | | Nitrogen, Nitrate + Nitrite | < 0.11 | 0.11 | mg/l
mg/l | I
T | 01/03/17 12:51 | | EPA 353.2/LACHAT | | Nitrogen, Nitrite d | < 0.010 | 0.010 | mg/l | i
l | 12/23/16 23:10 | | SM4500NO2 B-11 | | Sulfate | 38.6 | 10 | mg/l | 1 | 01/07/17 06:37 | JN | EPA 300/SW846 9056A | | Sulfide | < 2.0 | 2.0 | mg/l | 1 | 12/27/16 10:48 | MP | SM4500S2- F-11 | Report of Analysis (a) Calculated as: (Iron) - (Iron, Ferrous) (b) Field analysis required. Received out of hold time and analyzed by request. (c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time. (d) Received and analyzed out of holding time. # Report of Analysis Page 1 of I Client Sample ID: BR-3 Lab Sample ID: JC34340-10 Matrix: Method: AQ - Ground Water DF 1 SW846 8260C **Date Sampled:** 12/21/16 n/a Date Received: 12/23/16 Percent Solids: n/a Project: BMSMC, Building 5 Area, PR Prep Batch **Analytical Batch** V4B2796 Run #1 Run #2 Purge Volume Compound Run #1 5.0 ml File ID 4B68039.D Run #2 CAS No. Result Analyzed 12/31/16 RL By HT MDL Prep Date n/a Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. **Surrogate Recoveries** 1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8 460-00-4 4-Bromofluorobenzene Run#1 Run# 2 105% 114% 98% 112% 73-122% 84-119% 78-117% 76-120% Limits ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Page 1 of 3 Client Sample ID: BR-3 Lab Sample ID: JC34340-10 Matrix: Method: AQ - Ground Water Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Q Date Received: 12/23/16 Percent Solids: n/a **Analytical Batch** File ID DF Analyzed By **Prep Date** Prep Batch OP99514 E5P1725 Run #1 5P34336.D I 12/30/16 SB 12/28/16 Run #2 Final Volume Initial Volume Run #1 1.0 ml Run #2 #### **ABN TCL Special List** 990 ml | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.1 | 0.83 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.1 | 0.90 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.0 | 1.3 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.1 | 2.5 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 10 | 1.6 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.1 | 1.3 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.0 | 0.90 | սջ/1 | | | 3&4-Methylphenol | ND | 2.0 | 0.89 | սք/1 | | 88-75-5 | 2-Nitrophenol | ND | 5.1 | 0.97 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 10 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.0 | 1.4 | ug/l | | 108-95-2 | Phenol | ND | 2.0 | 0.40 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.1 | 1.5 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.1 | 1.3 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.1 | 0.93 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.0 | 0.19 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.0 | 0.14 | ug/l | | 98-86-2 | Acetophenone | ND | 2.0 | 0.21 | ug/l | | 120-12-7 | Anthracene | ND | 1.0 | 0.21 | սք/1 | | 1912-24-9 | Atrazine | ND | 2.0 | 0.45 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.1 | 0.29 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.0 | 0.21 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.0 | 0.22 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.0 | 0.34 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.0 | 0.21 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.0 | 0.41 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.0 | 0.46 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.0 | 0.21 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.0 | 0.24 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.1 | 0.34 | ug/l | | 86-74-8 | Carbazole | ND | 1.0 | 0.23 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-3 JC34340-10 Lab Sample ID: Matrix: Method: Project: AQ - Ground Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | Q | |-----------|-----------------------------|--------|--------|------|-------|-----| | 105-60-2 | Caprolactam | ND | 2.0 | 0.66 | ug/l | | | 218-01-9 | Chrysene | ND | 1.0 | 0.18 | ug/l | | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.0 | 0.28 | ug/l | | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.0 | 0.25 | ug/l | | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.0 | 0.41 | ug/l | | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.0 | 0.37 | ug/l | | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.0 | 0.56 | ug/l | | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.0 | 0.48 | ug/l | | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.0 | 0.51 | ug/l | | | 123-91-1 | 1,4-Dioxane | 27.6 | 1.0 | 0.66 | ug/l | | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.0 | 0.33 | ug/l | | | 132-64-9 | Dibenzofuran | ND | 5.1 | 0.22 | ug/l | | | 84-74-2 | Di-n-butyl phthalate | ND | 2.0 | 0.50 | ug/l | | | 117-84-0 | Di-n-octyl phthalate | ND | 2.0 | 0.24 | ug/l | | | 84-66-2 | Diethyl phthalate | ND | 2.0 | 0.26 | ug/l | | | 131-11-3 | Dimethyl phthalate | ND | 2.0 | 0.22 | ug/l | | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.0 | 1.7 | ug/l | | | 206-44-0 | Fluoranthene | ND | 1.0 | 0.17 | ug/l | | | 86-73-7 | Fluorene | ND | 1.0 | 0.17 | ug/l | | | 118-74-1 | Hexachlorobenzene | ND | 1.0 | 0.33 | ug/l | | | 87-68-3 | Hexachlorobutadiene | ND | 1.0 | 0.50 | ug/l | | | 77-47-4 | Hexachlorocyclopentadiene | ND | 10 | 2.8 | ug/l | | | 67-72-1 | Hexachloroethane | ND | 2.0 | 0.39 | ug/l | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.0 | 0.34 | ug/l | | | 78-59-1 | Isophorone | ND | 2.0 | 0.28 | ug/l | | | 90-12-0 | 1-Methylnaphthalene | ND | 1.0 | 0.27 | ug/l | | | 91-57-6 | 2-Methylnaphthalene | ND | 1.0 | 0.21 | ug/l | | | 88-74-4 | 2-Nitroaniline | ND | 5.1 | 0.28 | ug/l | | | 99-09-2 | 3-Nitroaniline | ND | 5.1 | 0.39 | ug/l | | | 100-01-6 | 4-Nitroaniline | ND | 5.1 | 0.44 | ug/l | | | 98-95-3 | Nitrobenzene | ND | 2.0 | 0.65 | ug/l | - / | |
621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.0 | 0.49 | ug/l | - 1 | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.1 | 0.22 | ug/l | _ \ | | 85-01-8 | Phenanthrene | ND | 1.0 | 0.18 | ug/1 | , | | 129-00-0 | Pyrene | ND | 1.0 | 0.22 | սք/1 | | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.0 | 0.37 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | | 367-12-4 2-Fluorophenol 49% 14-88% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound fael Infant Méndez IC # 1888 Client Sample ID: BR-3 Lab Sample ID: JC34340-10 Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 4165-62-2 | Phenol-d5 | 35% | | 10-110% | | 118-79-6 | 2,4,6-Tribromophenol | 70% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 74% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 75% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 83% | | 10-126% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: BR-3 JC34340-10 Lab Sample ID: Matrix: Method: Project: AQ - Ground Water SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a **Prep Batch Analytical Batch** File ID DF Analyzed By Prep Date OP99514A E3M3154 12/28/16 Run #1 3M67734.D 1 12/30/16 SG Run #2 Final Volume Initial Volume Run #1 990 ml 1.0 ml Run #2 | CAS No. | Compound | Result | RL | MDL | Units | Q | |-----------|------------------------|--------|--------|-------|-------|---| | 56-55-3 | Benzo(a)anthracene | ND | 0.051 | 0.023 | ug/l | | | 50-32-8 | Benzo(a)pyrene | ND | 0.051 | 0.034 | ug/l | | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.10 | 0.044 | ug/l | | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.10 | 0.033 | ug/l | | | 218-01-9 | Chrysene | ND | 0.10 | 0.026 | ug/l | | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.10 | 0.037 | ug/l | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.10 | 0.038 | ug/l | | | 91-20-3 | Naphthalene | ND | 0.10 | 0.030 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 4165-60-0 | Nitrobenzene-d5 | 76% | | 24-1 | 25% | | | 321-60-8 | 2-Fluorobiphenyl | 74% | | 19-1 | 27% | | | 1718-51-0 | Terphenyl-d14 | 77% | | 10-1 | 19% | | | | | | | | | 1 | | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** By XPL **Prep Date** n/a Page 1 of 1 Client Sample ID: BR-3 Lab Sample ID: JC34340-10 Matrix: AQ - Ground Water Method: Project: SW846-8015C (DAI) DF 1 File ID GH108000.D BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 GGH5600 Date Received: 12/23/16 Percent Solids: n/a n/a Q | e | Prep Batch | Analytical Batch | |---|------------|------------------| Run #1 Run #2 #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | |----------|----------------------|--------|--------|-------|-------| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/! | | 67-56-1 | Methanol | ND | 200 | 71 | ug/i | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | its | | 111-27-3 | Hexanol | 85% | | 56-14 | 45% | | 111-27-3 | Hexanol | 82% | | 56-14 | 45% | Analyzed 12/30/16 MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: BR-4 Lab Sample ID: JC34340-11 Matrix: AQ - Ground Water SW846 8260C Method: **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Project: BMSMC, Building 5 Area, PR File ID Run #1 4B68037.D DF 1 Analyzed 12/31/16 By HT **Prep Date** n/a Prep Batch n/a **Analytical Batch** V4B2796 Run #2 **Purge Volume** Compound Run #1 5.0 ml Run #2 CAS No. Result MDL Units Q 106-99-0 1,3-Butadiene ND 5.0 Run# 2 RL 0.17 Limits 76-120% ug/l CAS No. **Surrogate Recoveries** 1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8 460-00-4 4-Bromofluorobenzene 106% 113% Run# 1 73-122% 98% 84-119% 78-117% 115% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Client Sample ID: BR-4 Lab Sample ID: JC34340-11 File ID Matrix: AQ - Ground Water Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Received: 12/23/16 **Date Sampled:** 12/21/16 Percent Solids: n/a Run #1 Run #2 5P34345.D Analyzed 12/30/16 By SB **Prep Date** 12/28/16 Prep Batch OP99514 Q **Analytical Batch** E5P1725 Initial Volume 910 ml Final Volume 1.0 ml DF 1 Run #1 Run #2 ### **ABN TCL Special List** | CAS No. Compound | | Result | RL | MDL | Units | |------------------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.5 | 0.90 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.5 | 0.98 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.2 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.5 | 2,7 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.7 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.5 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.2 | 0.98 | ug/l | | | 3&4-Methylphenol | ND | 2.2 | 0.97 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.5 | 1.1 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 11 | 1.3 | ug/l | | 87-86-5 | Pentachiorophenol | ND | 4.4 | 1.5 | ug/l | | 108-95-2 | Phenol | ND | 2.2 | 0.43 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.5 | 1.6 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.5 | 1.5 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.5 | 1.0 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/l | | 98-86-2 | Acetophenone | ND | 2.2 | 0.23 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/l | | 1912-24-9 | Atrazine | ND | 2.2 | 0.49 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.5 | 0.32 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.37 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.44 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.50 | ug/l | | 92-52-4 | 1,1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.5 | 0.37 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-4 Lab Sample ID: JC34340-11 Date Sampled: 12/21/16 Matrix: AQ - Ground Water Date Received: 12/23/16 Method: SW846 8270D SW846 3510C Percent Solids: n/a Project: BMSMC, Building 5 Area, PR #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | Q | |-----------|-----------------------------|--------|--------|------|---------------|---| | 105-60-2 | Caprolactam | ND | 2.2 | 0.71 | ug/l | | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/l | | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.31 | ug/l | | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.2 | 0.27 | ug/l | | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.2 | 0.44 | ug/l | | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.40 | ug/l | | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.61 | ug/l | | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.52 | ug/l | | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.56 | սք/1 | | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.36 | ug/l | | | 132-64-9 | Dibenzofuran | ND | 5.5 | 0.24 | ug/l | | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.55 | u <u>g</u> /1 | | | 117-84-0 | Di-n-octyl phthalate | ND | 2.2 | 0.26 | ug/l | | | 84-66-2 | Diethyl phthalate | ND | 2.2 | 0.29 | ug/l | | | 131-11-3 | Dimethyl phthalate | ND | 2.2 | 0.24 | ug/l | | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.2 | 1.8 | ug/l | | | 206-44-0 | Fluoranthene | ND | 1.1 | 0.19 | սք/l | | | 86-73-7 | Fluorene | ND | 1.1 | 0.19 | ug/l | | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.36 | ug/l | | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.54 | ug/l | | | 77-47-4 | Hexachlorocyclopentadiene | ND | 11 | 3.1 | ug/l | | | 67-72-1 | Hexachloroethane | ND | 2.2 | 0.43 | ug/l | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.36 | ug/l | | | 78-59-1 | Isophorone | ND | 2.2 | 0.30 | սք/1 | | | 90-12-0 | 1-Methylnaphthalene | ND | 1.1 | 0.29 | ug/l | | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | | 88-74-4 | 2-Nitroaniline | ND | 5.5 | 0.30 | ug/l | | | 99-09-2 | 3-Nitroaniline | ND | 5.5 | 0.43 | ug/l | - nish- | | 100-01-6 | 4-Nitroaniline | ND | 5.5 | 0.48 | ug/l | 130CHEG A | | 98-95-3
| Nitrobenzene | ND | 2.2 | 0.71 | ug/l | 300 | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.53 | ug/l | fuel Infante | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.5 | 0.24 | ug/l | Méndez 📑 | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | IC # 1888 8 | | 129-00-0 | Pyrene | ND | 1.1 | 0.24 | ug/l | (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.41 | ug/l | MICO LICENCHIS | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | LOULICENS | | 367-12-4 | 2-Fluorophenol | 52% | | 14-8 | 88% | | | 4165-62-2 | Phenol-d5 | 37% | | | 10% | | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-4 Lab Sample ID: JC34340-11 Matrix: AQ - Ground Water SW846 8270D SW846 3510C Method: Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 86% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 74% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 72% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 76% | | 10-126% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page I of 1 Client Sample ID: BR-4 Lab Sample ID: JC34340-11 Matrix: Method: Project: AQ - Ground Water SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q File ID DF Prep Date **Prep Batch Analytical Batch** Analyzed By Run #1 12/31/16 SG 12/28/16 OP99514A E4M3182 4M69415.D Run #2 Final Volume Initial Volume 910 ml 1.0 ml Run #1 Run #2 | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.055 | 0.025 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.055 | 0.037 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.048 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.036 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.029 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.11 | 0.040 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.11 | 0.042 | ug/l | | 91-20-3 | Naphthalene | ND | 0.11 | 0.032 | ug/l | | 123-91-1 | 1,4-Dioxane | 0.311 | 0.11 | 0.054 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 4165-60-0 | Nitrobenzene-d5 | 67% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 66% | | 19-1 | 27% | | 1718-51-0 | Terphenyl-d14 | 82% | | 10-1 | 19% | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: BR-4 Lab Sample ID: JC34340-11 Matrix: Method: AQ - Ground Water Project: SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a | Run #1 | File ID
GH 107999.D | DF
1 | Analyzed
12/30/16 | By
XPL | Prep Date | Prep Batch | Analytical Batch
GGH5600 | |--------|------------------------|---------|----------------------|-----------|-----------|------------|-----------------------------| | Run #2 | | | | | | | | ### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | |----------|----------------------|--------|--------|------|-------| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 111-27-3 | Hexanol | 82% | | 56-1 | 45% | | 111-27-3 | Hexanol | 81% | | 56-1 | 45% | | | | | | | | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound ## Report of Analysis Page 1 of 1 Client Sample ID: FB122116 Lab Sample ID: JC34340-12 Matrix: AQ - Field Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a File ID DF By Prep Date **Prep Batch Analytical Batch** Analyzed Run #1 4B68066.D 01/03/17 V4B2797 1 HT n/a n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 **MDL** RL Units Q CAS No. Compound Result 5.0 106-99-0 1,3-Butadiene ND 0.17 ug/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 105% 76-120% 73-122% 1,2-Dichloroethane-D4 17060-07-0 109% 84-119% 2037-26-5 Toluene-D8 99% 460-00-4 4-Bromofluorobenzene 113% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 3 Client Sample ID: FB122116 Lab Sample ID: JC34340-12 Matrix: Method: Project: AQ - Field Blank Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q Analytical Batch Prep Batch File ID DF Analyzed By Prep Date 5P34346.D 12/30/16 12/28/16 OP99514 E5P1725 Run #1 1 SB Run #2 Initial Volume **Final Volume** Run #1 Run #2 1.0 ml ### **ABN TCL Special List** 920 ml | CAS No. Compound | | Result | RL | MDL | Units | |------------------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.4 | 0.89 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.4 | 0.97 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.2 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.4 | 2.7 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.7 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.4 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.2 | 0.97 | ug/l | | | 3&4-Methylphenol | ND | 2.2 | 0.96 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.4 | 1.0 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | -11 | 1.3 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.3 | 1.5 | ug/l | | 108-95-2 | Phenol | ND | 2.2 | 0.43 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.4 | 1.6 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.4 | 1.4 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.4 | 1.0 | ug/i | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/l | | 98-86-2 | Acetophenone | ND | 2.2 | 0.23 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/l | | 1912-24-9 | Atrazine | ND | 2.2 | 0.49 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.4 | 0.31 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.22 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.37 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.22 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.44 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.50 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.4 | 0.37 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: FB122116 Lab Sample ID: JC34340-12 Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | Q | |------------|-----------------------------|--------|--------|-------|-------|---------------| | 105-60-2 | Caprolactam | ND | 2.2 | 0.71 | ug/l | | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/l | | | 111-91-1 t | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.30 | ug/l | | | 111-44-4 t | bis(2-Chloroethyl)ether | ND | 2.2 | 0.27 | ug/l | | | 108-60-1 t | ois(2-Chloroisopropyl)ether | ND | 2.2 | 0.44 | ug/l | | | | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.40 | ug/l | | | | 2,4-Dinitrotoluene | ND | 1.1 | 0.60 | ug/l | | | | 2,6-Dinitrotoluene | ND | 1.1 | 0.52 | ug/l | | | | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.55 | ug/l | | | | Dibenzo(a,h)anthracene | ND | 1.1 | 0.36 | ug/l | | | | Dibenzofuran | ND | 5.4 | 0.24 | ug/l | | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.54 | ug/l | | | | Di-n-octyl phthalate | ND | 2.2 | 0.25 | ug/l | | | | Diethyl phthalate | ND | 2.2 | 0.28 | ug/l | | | | Dimethy! phthalate | ND | 2.2 | 0.24 | ug/l | | | | ois(2-Ethylhexyl)phthalate | 1.9 | 2.2 | 1.8 | ug/l | J | | | Fluoranthene | ND | 1.1 | 0.18 | ug/l | | | 86-73-7 F | Fluorene | ND | 1.1 | 0.19 | ug/l | | | 118-74-1 F | Hexachlorobenzene | ND | 1.1 | 0.35 | սց/1 | | | 87-68-3 I | Hexachlorobutadiene | ND | 1.1 | 0.53 | ug/l | | | 77-47-4 I | Hexachlorocyclopentadiene | ND | 11 | 3.0 | ug/l | | | | Hexachloroethane | ND | 2.2 | 0.42 | ug/l | | | 193-39-5 I | ndeno(1,2,3-cd)pyrene | ND | 1.1 | 0.36 | ug/l | | | | sophorone | ND | 2.2 | 0.30 | ug/l | | | 90-12-0 | l-Methylnaphthalene | ND | 1.1 | 0.29 | ug/l | | | 91-57-6 2 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | | 88-74-4 2 | 2-Nitroaniline | ND | 5.4 | 0.30 | ug/l | | | 99-09-2 | 3-Nitroaniline | ND | 5.4 |
0.42 | ug/l | | | 100-01-6 4 | 4-Nitroaniline | ND | 5.4 | 0.48 | ug/l | SOCIADO | | 98-95-3 N | Nitrobenzene | ND | 2.2 | 0.70 | ug/l | 9E 1000000 | | 621-64-7 N | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.52 | บg/l | 300 | | | N-Nitrosodiphenylamine | ND | 5.4 | 0.24 | ug/l | fael Infante | | 85-01-8 F | Phenanthrene | ND | 1.1 | 0.19 | ug/l | Méndez 👺 | | 129-00-0 F | Pyrene | ND | 1.1 | 0.24 | ug/l | IC # 1888 /S | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.40 | ug/l | 0/ | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | CO LICENCIADO | | 367-12-4 2 | 2-Fluorophenol | 57% | | 14-88 | 3% | | | | Phenol-d5 | 37% | | 10-1 | | | ND = Not detected RL = Reporting Limit MDL = Method Detection Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank Client Sample ID: FB122116 Lab Sample ID: JC34340-12 AQ - Field Blank Water SW846 8270D SW846 3510C Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Method: Project: Matrix: BMSMC, Building 5 Area, PR ### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 84% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 74% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 75% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 92% | | 10-126% | E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound # **Report of Analysis** Page 1 of 1 Client Sample ID: FB122116 Lab Sample ID: JC34340-12 Matrix: AQ - Field Blank Water Method: SW846 8270D BY SIM SW846 3510C Date Received: 12/23/16 Percent Solids: n/a Q **Date Sampled:** 12/21/16 Project: BMSMC, Building 5 Area, PR Run #2 Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch 12/30/16 12/28/16 OP99514A E3M3154 Run #1 3M67736.D SG Initial Volume Final Volume Run #1 920 ml 1.0 ml Run #2 | CAS No. Compound | | Result | RL | MDL | Units | |------------------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.054 | 0.025 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.054 | 0.036 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.047 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.036 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.028 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.11 | 0.039 | ug/l | | 193-39-5 | * * * | | 0.11 | 0.041 | ug/l | | 91-20-3 | Naphthalene | ND | 0.11 | 0.032 | ug/l | | 123-91-1 | 1,4-Dioxane | ND | 0.11 | 0.053 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 4165-60-0 | Nitrobenzene-d5 | 73% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 71% | | 19-1 | 27% | | 1718-51-0 | Terphenyl-d14 | 85% | | | 19% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: FB122116 Lab Sample ID: JC34340-12 Matrix: Method: Project: AQ - Field Blank Water SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/21/16 Date Received: 12/23/16 Percent Solids: n/a Q | Γ | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |---|--------|------------|----|----------|-----|-----------|------------|------------------| | F | Run #1 | GH107998.D | 1 | 12/30/16 | XPL | n/a | n/a | GGH5600 | Run #2 #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | | |----------|----------------------|--------|--------|---------|--------|--| | | | | | | | | | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | | | | | | | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | Limits | | | | | | | | | | | 111-27-3 | Hexanol | 99% | | 56-145% | | | | 111-27-3 | Hexanol | 81% | | 56-145% | | | | | | | | | | | MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## Report of Analysis Page 1 of 1 Client Sample ID: TB122116NR Lab Sample ID: JC34340-13 Matrix: AQ - Trip Blank Water Method: SW846 8260C Project: DF 1 **Date Sampled:** 12/21/16 n/a Q Date Received: 12/23/16 Percent Solids: n/a BMSMC, Building 5 Area, PR Prep Date Prep Batch **Analytical Batch** V4B2797 4B68067.D File ID Run #1 Run #2 Purge Volume Compound Run #1 Run #2 CAS No. 460-00-4 5.0 ml Result Analyzed 01/03/17 RL By HT **MDL** n/a Units 106-99-0 1.3-Butadiene ND Run# 1 5.0 Run# 2 0.17 ug/l Limits CAS No. **Surrogate Recoveries** Dibromofluoromethane 1868-53-7 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8 4-Bromofluorobenzene 104% 113% 99% 113% 73-122% 84-119% 78-117% 76-120% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: TB122116RS Lab Sample ID: JC34340-14 Matrix: AQ - Trip Blank Water Method: SW846 8260C Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/21/16 Date Received: 12/23/16 Percent Solids: n/a DF **Prep Date** Prep Batch **Analytical Batch** File ID Analyzed By V4B2799 Run #1 4B68109.D 01/04/17 HTn/a 1 n/a Run #2 Purge Volume Run #1 5.0 ml Compound Run #2 CAS No. **MDL** Result RL Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l Run# 2 CAS No. **Surrogate Recoveries** Run#1 Limits Dibromofluoromethane 110% 76-120% 1868-53-7 1,2-Dichloroethane-D4 109% 73-122% 17060-07-0 Toluene-D8 104% 84-119% 2037-26-5 460-00-4 4-Bromofluorobenzene 107% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ### Report of Analysis Page 1 of 1 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 Matrix: **Project:** AQ - Equipment Blank Method: BMSMC, Building 5 Area, PR SW846 8260C **Date Sampled:** 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Analytical Batch File ID DF By **Prep Date Prep Batch** Analyzed Run #1 4B68069.D 01/03/17 HT V4B2797 n/a n/a Run #2 Purge Volume Run #1 5.0 ml Run #2 CAS No. Compound Result RL **MDL** Units Q 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 106% 76-120% 17060-07-0 1,2-Dichloroethane-D4 112% 73-122% 2037-26-5 Toluene-D8 99% 84-119% 460-00-4 4-Bromofluorobenzene 115% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## Report of Analysis By RL 12/29/16 Analyzed 01/03/17 Page I of 3 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 File ID P110196.D Matrix: Method: AQ - Equipment Blank DF Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/22/16 Date Received: 12/23/16 Percent Solids: n/a OP99540 Q Prep Date Prep Batch **Analytical Batch** EP4893 Run #1 Run #2 > Final Volume Initial Volume Run #1 Run #2 900 ml 1.0 ml #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.6 | 0.91 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.6 | 0.99 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.2 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.6 | 2.7 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.7 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.6 | 1.4 | นg/l | | 95-48-7 | 2-Methylphenol | ND | 2.2 | 0.99 | ug/l | | | 3&4-Methylphenol | ND | 2.2 | 0.98 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.6 | 1.1 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | 11 | 1.3 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.4 | 1.5 | ug/i | | 108-95-2 | Phenol | ND | 2.2 | 0.44 | ug/1 | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.6 | 1.6 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.6 | 1.5 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.6 | 1.0 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/1 | | 98-86-2 | Acetophenone | ND | 2.2 | 0.23 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/i | | 1912-24-9 | Atrazine | ND | 2.2 | 0.50 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.6 | 0.32 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.23 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.24 | ug/I | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.38 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.23 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.45 | սք/1 | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.51 | ug/l | | 92-52-4 | 1, 1'-Biphenyl | ND | 1.1 | 0.24 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.6 | 0.38 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Client Sample ID: EB122216 Lab Sample ID: JC34340-15 Matrix: AQ - Equipment
Blank Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Q ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.2 | 0.72 | ug/l | | 218-01-9 | Chrysene | ND | 1.1 | 0.20 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.31 | ug/l | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.2 | 0.28 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.2 | 0.45 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.41 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.61 | ug/l | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.53 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.56 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.37 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.6 | 0.24 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.55 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.2 | 0.26 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.2 | 0.29 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.2 | 0.24 | ug/l | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.2 | 1.8 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.1 | 0.19 | ug/l | | 86-73-7 | Fluorene | ND | 1.1 | 0.19 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.36 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.55 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | 11 | 3.1 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.2 | 0.43 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.37 | ug/l | | 78-59-1 | Isophorone | ND | 2.2 | 0.31 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.1 | 0.29 | ug/l | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.6 | 0.31 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.6 | 0.43 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.6 | 0.49 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.2 | 0.71 | սք/1 | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.53 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.6 | 0.25 | սք/1 | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | | 129-00-0 | Pyrene | ND | 1.1 | 0.24 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.41 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 367-12-4 | 2-Fluorophenol | 37% | | 14-8 | 8% | | 4165-62-2 | Phenol-d5 | 24% | | 10-1 | 10% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # **Report of Analysis** Page 3 of 3 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 Matrix: AQ - Equipment Blank Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a ### **ABN TCL Special List** | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | |-----------|----------------------|--------|--------|---------| | 118-79-6 | 2,4,6-Tribromophenol | 85% | | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 60% | | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 70% | | 35-119% | | 1718-51-0 | Terphenyl-d14 | 82% | | 10-126% | E = Indicates value exceeds calibration range B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound # **Report of Analysis** Page 1 of 1 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 Matrix: Method: AQ - Equipment Blank SW846 8270D BY SIM SW846 3510C Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Q Project: BMSMC, Building 5 Area, PR File ID DF By **Prep Date** Prep Batch **Analytical Batch** Analyzed 3M67752.D 12/30/16 SG 12/29/16 OP99540A E3M3155 1 Run #1 Run #2 > Final Volume Initial Volume 900 ml 1.0 ml > > Terphenyl-d14 Run #1 Run #2 1718-51-0 | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.056 | 0.025 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.056 | 0.037 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.048 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.037 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.029 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.11 | 0.040 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.11 | 0.042 | ug/l | | 91-20-3 | Naphthalene | ND | 0.11 | 0.033 | ug/l | | 123-91-1 | 1,4-Dioxane | ND | 0.11 | 0.054 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 4165-60-0 | Nitrobenzene-d5 | 80% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 68% | | 19-1 | 27% | | | | | | | | 75% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value 10-119% B = Indicates analyte found in associated method blank # **Report of Analysis** Page 1 of 1 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 Matrix: AQ - Equipment Blank Method: SW846-8015C (DAI) Project: BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------|------------|----|----------|-----|-----------|------------|------------------| | Run #1 | GH107997.D | 1 | 12/30/16 | XPL | n/a | n/a | GGH5600 | | Run #2 | | | | | | | | #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | Q | |----------|----------------------|--------|--------|-------|-------|---| | 64-17-5 | Ethanol | ND | 100 | 55 | սջ/i | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 91% | | 56-1- | 45% | | | 111-27-3 | Hexanol | 88% | | 56-1 | 45% | | ND Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## Report of Analysis Page 1 of 1 **Analytical Batch** G8G54 Client Sample ID: EB122216 Lab Sample ID: JC34340-15 900 ml Matrix: AQ - Equipment Blank Method: Project: SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Q Date Received: 12/23/16 Percent Solids: n/a | ۰ | | | | | | | | |---|--------|----------|----|----------|----|-----------|------------| | | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | | | Run #1 | 8G1635.D | 1 | 01/03/17 | JR | 12/29/16 | OP99539 | Run #2 Initial Volume Final Volume Run #1 10.0 ml Run #2 #### Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | |------------|----------------------|--------|--------|--------|-------| | 309-00-2 | Aldrin | ND | 0.011 | 0.0067 | ug/l | | 319-84-6 | alpha-BHC | ND | 0.011 | 0.0067 | ug/l | | 319-85-7 | beta-BHC | ND | 0.011 | 0.0063 | ug/l | | 319-86-8 | delta-BHC | ND | 0.011 | 0.0051 | ug/l | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.011 | 0.0031 | ug/l | | 5103-71-9 | alpha-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 5103-74-2 | gamma-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 60-57-1 | Dieldrin | ND | 0.011 | 0.0040 | ug/l | | 72-54-8 | 4,4'-DDD | ND | 0.011 | 0.0042 | ug/l | | 72-55-9 | 4,4'-DDE | ND | 0.011 | 0.0068 | ug/l | | 50-29-3 | 4,4'-DDT | ND | 0.011 | 0.0055 | ug/l | | 72-20-8 | Endrin | ND | 0.011 | 0.0056 | ug/l | | 1031-07-8 | Endosulfan sulfate | ND | 0.011 | 0.0058 | ug/l | | 7421-93-4 | Endrin aldehyde | ND | 0.011 | 0.0057 | ug/l | | 53494-70-5 | Endrin ketone | ND | 0.011 | 0.0056 | ug/l | | 959-98-8 | Endosulfan-I | ND | 0.011 | 0.0055 | ug/l | | 33213-65-9 | Endosulfan-II | ND | 0.011 | 0.0048 | ug/l | | 76-44-8 | Heptachlor | ND | 0.011 | 0.0042 | ug/l | | 1024-57-3 | Heptachlor epoxide | ND | 0.011 | 0.0073 | ug/l | | 72-43-5 | Methoxychlor | ND | 0.022 | 0.0063 | ug/l | | 8001-35-2 | Toxaphene | ND | 0.28 | 0.20 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | | 877-09-8 | Tetrachloro-m-xylene | 96% | | 26-13 | 32% | | 877-09-8 | Tetrachloro-m-xylene | 100% | | 26-13 | 32% | | 2051-24-3 | Decachlorobiphenyl | 30% | | 10-11 | 18% | | 2051-24-3 | Decachlorobiphenyl | 29% | | 10-11 | 18% | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## Report of Analysis Page 1 of 1 Client Sample ID: RA-10D Lab Sample ID: JC34340-16 Matrix: Method: Project: AQ - Ground Water SW846 8260C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a File ID DF Analyzed By Prep Date **Prep Batch Analytical Batch** V4B2797 Run #1 4B68061.D 01/03/17 HT n/a n/a Run #2 **Purge Volume** Run #1 5.0 ml Run #2 RL MDL Units Q CAS No. Compound Result 106-99-0 1,3-Butadiene ND 5.0 0.17 սջ/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits Dibromofluoromethane 76-120% 1868-53-7 105% 1,2-Dichloroethane-D4 112% 73-122% 17060-07-0 84-119% Toluene-D8 97% 2037-26-5 460-00-4 4-Bromofluorobenzene 105% 78-117% ND = Not detected MDL = Method Detection Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound # Report of Analysis Page I of 3 Client Sample ID: RA-10D Lab Sample ID: JC34340-16 Matrix: Method: Project: AQ - Ground Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Q | | File ID | DF
 Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | P110152.D | 1 | 12/30/16 | IJ | 12/29/16 | OP99540 | EP4891 | | Run #2 | P110195.D | 50 | 01/03/17 | RL | 12/29/16 | OP99540 | EP4893 | | | Initial Volume | Final Volume | · | | |--------|----------------|--------------|---|--| | Run #1 | 925 ml | 1.0 ml | | | | Run #2 | 925 ml | 1.0 ml | | | #### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|----------------------------|--------|-----|------|-------| | 95-57-8 | 2-Chlorophenol | ND | 5.4 | 0.89 | ug/l | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 5.4 | 0.96 | ug/l | | 120-83-2 | 2,4-Dichlorophenol | ND | 2.2 | 1.4 | ug/l | | 105-67-9 | 2,4-Dimethylphenol | ND | 5.4 | 2.6 | ug/l | | 51-28-5 | 2,4-Dinitrophenol | ND | 11 | 1.7 | ug/l | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 5.4 | 1.4 | ug/l | | 95-48-7 | 2-Methylphenol | ND | 2.2 | 0.96 | ug/l | | | 3&4-Methylphenol | ND | 2.2 | 0.95 | ug/l | | 88-75-5 | 2-Nitrophenol | ND | 5.4 | 1.0 | ug/l | | 100-02-7 | 4-Nitrophenol | ND | -11 | 1.2 | ug/l | | 87-86-5 | Pentachlorophenol | ND | 4.3 | 1.5 | ug/l | | 108-95-2 | Phenol | ND | 2.2 | 0.42 | ug/l | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 5.4 | 1.6 | ug/l | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 5.4 | 1.4 | ug/l | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 5.4 | 1.0 | ug/l | | 83-32-9 | Acenaphthene | ND | 1.1 | 0.21 | ug/l | | 208-96-8 | Acenaphthylene | ND | 1.1 | 0.15 | ug/l | | 98-86-2 | Acetophenone | ND | 2.2 | 0.22 | ug/l | | 120-12-7 | Anthracene | ND | 1.1 | 0.23 | ug/l | | 1912-24-9 | Atrazine | ND | 2.2 | 0.48 | ug/l | | 100-52-7 | Benzaldehyde | ND | 5.4 | 0.31 | ug/l | | 56-55-3 | Benzo(a)anthracene | ND | 1.1 | 0.22 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 1.1 | 0.23 | սք/1 | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.1 | 0.22 | սջ/1 | | 191-24-2 | Benzo(g,h,i)perylene | ND | 1.1 | 0.37 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.1 | 0.22 | ug/l | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 2.2 | 0.44 | ug/l | | 85-68-7 | Butyl benzyl phthalate | ND | 2.2 | 0.49 | ug/l | | 92-52-4 | I, 1'-Biphenyl | ND | 1.1 | 0.23 | ug/l | | 91-58-7 | 2-Chloronaphthalene | ND | 2.2 | 0.26 | ug/l | | 106-47-8 | 4-Chloroaniline | ND | 5.4 | 0.37 | ug/l | | 86-74-8 | Carbazole | ND | 1.1 | 0.25 | ug/l | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Client Sample ID: RA-10D Lab Sample ID: JC34340-16 Matrix: AQ - Ground Water Method: BMSMC, Building 5 Area, PR Project: SW846 8270D SW846 3510C Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Q ### **ABN TCL Special List** | CAS No. | Compound | Result | RL | MDL | Units | |-----------|-----------------------------|--------|--------|------|-------| | 105-60-2 | Caprolactam | ND | 2.2 | 0.70 | սջ/l | | 218-01-9 | Chrysene | ND | 1.1 | 0.19 | ug/l | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 2.2 | 0.30 | ug/l | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 2.2 | 0.27 | ug/l | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | 2.2 | 0.44 | ug/l | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | 2.2 | 0.40 | ug/l | | 121-14-2 | 2,4-Dinitrotoluene | ND | 1.1 | 0.60 | ug/l | | 606-20-2 | 2,6-Dinitrotoluene | ND | 1.1 | 0.51 | ug/l | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | 2.2 | 0.55 | ug/l | | 123-91-1 | 1,4-Dioxane | 1520 a | 54 | 36 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.1 | 0.36 | ug/l | | 132-64-9 | Dibenzofuran | ND | 5.4 | 0.24 | ug/l | | 84-74-2 | Di-n-butyl phthalate | ND | 2.2 | 0.54 | ug/l | | 117-84-0 | Di-n-octyl phthalate | ND | 2.2 | 0.25 | ug/l | | 84-66-2 | Diethyl phthalate | ND | 2.2 | 0.28 | ug/l | | 131-11-3 | Dimethyl phthalate | ND | 2.2 | 0.24 | ug/l | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | 2.2 | 1.8 | ug/l | | 206-44-0 | Fluoranthene | ND | 1.1 | 0.18 | ug/l | | 86-73-7 | Fluorene | ND | 1.1 | 0.18 | ug/l | | 118-74-1 | Hexachlorobenzene | ND | 1.1 | 0.35 | ug/l | | 87-68-3 | Hexachlorobutadiene | ND | 1.1 | 0.53 | ug/l | | 77-47-4 | Hexachlorocyclopentadiene | ND | -11 | 3.0 | ug/l | | 67-72-1 | Hexachloroethane | ND | 2.2 | 0.42 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.1 | 0.36 | ug/l | | 78-59-1 | Isophorone | ND | 2.2 | 0.30 | ug/l | | 90-12-0 | 1-Methylnaphthalene | ND | 1.1 | 0.28 | ug/i | | 91-57-6 | 2-Methylnaphthalene | ND | 1.1 | 0.23 | ug/l | | 88-74-4 | 2-Nitroaniline | ND | 5.4 | 0.30 | ug/l | | 99-09-2 | 3-Nitroaniline | ND | 5.4 | 0.42 | ug/l | | 100-01-6 | 4-Nitroaniline | ND | 5.4 | 0.48 | ug/l | | 98-95-3 | Nitrobenzene | ND | 2.2 | 0.69 | ug/l | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | 2.2 | 0.52 | ug/l | | 86-30-6 | N-Nitrosodiphenylamine | ND | 5.4 | 0.24 | ug/l | | 85-01-8 | Phenanthrene | ND | 1.1 | 0.19 | ug/l | | 129-00-0 | Pyrene | ND | 1.1 | 0.24 | ug/l | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | 2.2 | 0.40 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit 367-12-4 E = Indicates value exceeds calibration range 2-Fluorophenol J = Indicates an estimated value 14-88% 0% b 41% B = Indicates analyte found in associated method blank Page 3 of 3 # Report of Analysis Client Sample ID: RA-10D Lab Sample ID: JC34340-16 AQ - Ground Water Date Sampled: 12/22/16 Date Received: 12/23/16 Method: Project: Matrix: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Percent Solids: n/a ### ABN TCL Special List | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits | | |-----------|----------------------|--------|--------|---------|--| | 4165-62-2 | Phenol-d5 | 30% | 0% b | 10-110% | | | 118-79-6 | 2,4,6-Tribromophenol | 96% | 0% b | 39-149% | | | 4165-60-0 | Nitrobenzene-d5 | 71% | 0% b | 32-128% | | | 321-60-8 | 2-Fluorobiphenyl | 79% | 0% b | 35-119% | | | 1718-51-0 | Terphenyl-d14 | 87% | 0% b | 10-126% | | (a) Result is from Run# 2 (b) Outside control limits due to dilution. RL = Reporting Limit E = Indicates value exceeds calibration range B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: RA-10D Lab Sample ID: JC34340-16 Matrix: Method: AQ - Ground Water Project: SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Q Date Received: 12/23/16 Percent Solids: n/a | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |--------|-----------|----|----------|----|-----------|------------|------------------| | Run #1 | 3M67751.D | 1 | 12/30/16 | SG | 12/29/16 | OP99540A | E3M3155 | | n #2 | | | | | | | | Run #2 Final Volume Initial Volume 1.0 ml 925 ml Run #1 Run #2 | CAS No. | Compound | Result | RL | MDL | Units | |-----------|------------------------|--------|--------|-------|-------| | 56-55-3 | Benzo(a)anthracene | ND | 0.054 | 0.025 | ug/l | | 50-32-8 | Benzo(a)pyrene | ND | 0.054 | 0.036 | ug/l | | 205-99-2 | Benzo(b)fluoranthene | ND | 0.11 | 0.047 | ug/l | | 207-08-9 | Benzo(k)fluoranthene | ND | 0.11 | 0.036 | ug/l | | 218-01-9 | Chrysene | ND | 0.11 | 0.028 | ug/l | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 0.11 | 0.039 | ug/l | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 0.11 | 0.041 | ug/l | | 91-20-3 | Naphthalene | 0.236 | 0.11 | 0.032 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | 4165-60-0 | Nitrobenzene-d5 | 100% | | 24-1 | 25% | | 321-60-8 | 2-Fluorobiphenyl | 86% | | 19-1 | 27% | | 1718-51-0 | Terphenyl-d14 | 81% | | 10-1 | 19% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## **Report of Analysis** Page 1 of 1 Client Sample ID: RA-10D Lab Sample ID: Matrix: Method: JC34340-16 AQ - Ground Water SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Q Percent Solids: n/a | - 1 | | | | | | | | | ٠ | |-----|--------|------------|----|----------|-----|-----------|------------|------------------|---| | | | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | | | | Run #1 | GH107994.D | 1 | 12/30/16 | XPL | n/a | n/a | GGH5600 | | Run #2 Project: #### Low Molecular Alcohol List | CAS No. | Compound | Result | RL | MDL | Units | | |----------|----------------------|--------|--------|------|-------|---| | 64-17-5 | Ethanol | ND | 100 | 55 | ug/l | | | 78-83-1 | Isobutyl Alcohol | ND | 100 | 36 | ug/l | | | 67-63-0 | Isopropyl Alcohol | ND | 100 | 68 | ug/l | | | 71-23-8 | n-Propyl Alcohol | ND | 100 | 43 | ug/l | | | 71-36-3 | n-Butyl Alcohol | ND | 100 | 87 | ug/l | | | 78-92-2 | sec-Butyl Alcohol | ND | 100 | 66 | ug/l | | | 67-56-1 | Methanol | ND | 200 | 71 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Lim | its | | | 111-27-3 | Hexanol | 89% | | 56-1 | 45% | | | 111-27-3 | Hexanol | 85% | | 56-1 | 45% | 1 | | | | | | 83 | 150 | 3 | RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound # Report of Analysis Page 1 of 1 Client Sample ID: RA-10D Lab Sample ID: JC34340-16 Matrix: AQ - Ground Water Method: Project: SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Q Date Received: 12/23/16 Percent Solids: n/a Prep Batch **Analytical Batch** File ID Analyzed By **Prep Date** DF OP99539 G8G54 Run #1 01/03/17 12/29/16 8G1631.D JR Run #2 Initial Volume **Final Volume** 900 ml 10.0 ml Run #1 Run #2 #### Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | |------------|----------------------|--------|--------|--------|-------| | 309-00-2 | Aldrin | ND | 0.011 | 0.0067 | ug/l | | 319-84-6 |
alpha-BHC | ND | 0.011 | 0.0067 | ug/l | | 319-85-7 | beta-BHC | ND | 0.011 | 0.0063 | ug/l | | 319-86-8 | delta-BHC | ND | 0.011 | 0.0051 | ug/l | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.011 | 0.0031 | ug/l | | 5103-71-9 | alpha-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 5103-74-2 | gamma-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 60-57-1 | Dieldrin | ND | 0.011 | 0.0040 | ug/l | | 72-54-8 | 4,4'-DDD | ND | 0.011 | 0.0042 | ug/l | | 72-55-9 | 4,4'-DDE | ND | 0.011 | 0.0068 | ug/l | | 50-29-3 | 4,4'-DDT | ND | 0.011 | 0.0055 | ug/l | | 72-20-8 | Endrin | ND | 0.011 | 0.0056 | ug/l | | 1031-07-8 | Endosulfan sulfate | ND | 0.011 | 0.0058 | ug/l | | 7421-93-4 | Endrin aldehyde | ND | 0.011 | 0.0057 | ug/l | | 53494-70-5 | Endrin ketone | ND | 0.011 | 0.0056 | ug/l | | 959-98-8 | Endosulfan-I | ND | 0.011 | 0.0055 | ug/l | | 33213-65-9 | Endosulfan-II | ND | 110.0 | 0.0048 | ug/l | | 76-44-8 | Heptachlor | ND | 0.011 | 0.0042 | ug/l | | 1024-57-3 | Heptachlor epoxide | ND | 0.011 | 0.0073 | ug/l | | 72-43-5 | Methoxychlor | ND | 0.022 | 0.0063 | ug/l | | 8001-35-2 | Toxaphene | ND | 0.28 | 0.20 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limit | ts | | 877-09-8 | Tetrachloro-m-xylene | 91% | | 26-13 | 2% | | 877-09-8 | Tetrachloro-m-xylene | 91% | | 26-13 | 2% | | 2051-24-3 | Decachlorobiphenyl | 80% | | 10-11 | 8% | | 2051-24-3 | Decachlorobiphenyl | | | | 8% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## **Report of Analysis** By HT n/a Page 1 of 1 Client Sample ID: TB122216NRA Lab Sample ID: JC34340-17 AQ - Trip Blank Water Date Sampled: 12/22/16 Date Received: 12/23/16 Matrix: Method: SW846 8260C Percent Solids: n/a n/a Q ug/l Project: BMSMC, Building 5 Area, PR Analyzed 01/03/17 DF **Analytical Batch** Prep Date Prep Batch V4B2797 Run #1 Run #2 Purge Volume Compound File ID 4B68070.D Run #1 5.0 ml Run #2 CAS No. Result RL **MDL** Units 106-99-0 ND 5.0 0.17 1,3-Butadiene CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits Dibromofluoromethane 105% 76-120% 1868-53-7 1,2-Dichloroethane-D4 73-122% 17060-07-0 112% 2037-26-5 Toluene-D8 97% 84-119% 460-00-4 4-Bromofluorobenzene 116% 78-117% ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## Report of Analysis By JR **Prep Date** 12/29/16 Page 1 of 1 Client Sample ID: MW-20S Lab Sample ID: JC34340-18 Matrix: AQ - Ground Water DF Method: Project: SW846 8081B SW846 3510C File ID 8G1664.D BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 G8G54 Percent Solids: n/a OP99539 **Analytical Batch Prep Batch** Run #1 Run #2 Run #1 Run #2 **Initial Volume** **Final Volume** Analyzed 01/04/17 1000 ml 10.0 ml Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | (| |------------|----------------------|--------|--------|--------|-------|-----| | 309-00-2 | Aldrin | ND | 0.010 | 0.0060 | ug/l | | | 319-84-6 | alpha-BHC | ND | 0.010 | 0.0060 | ug/l | | | 319-85-7 | beta-BHC | ND | 0.010 | 0.0057 | ug/l | | | 319-86-8 | delta-BHC | ND | 0.010 | 0.0046 | ug/l | | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.010 | 0.0028 | ug/l | | | 5103-71-9 | alpha-Chlordane | ND | 0.010 | 0.0046 | ug/l | | | 5103-74-2 | gamma-Chlordane | ND | 0.010 | 0.0046 | ug/l | | | 60-57-1 | Dieldrin | ND | 0.010 | 0.0036 | ug/l | | | 72-54-8 | 4,4'-DDD | ND | 0.010 | 0.0038 | ug/l | | | 72-55-9 | 4,4'-DDE | ND | 0.010 | 0.0062 | ug/l | | | 50-29-3 | 4,4' -DDT | ND | 0.010 | 0.0050 | ug/l | | | 72-20-8 | Endrin | ND | 0.010 | 0.0050 | ug/l | | | 1031-07-8 | Endosulfan sulfate | ND | 0.010 | 0.0053 | ug/l | | | 7421-93-4 | Endrin aldehyde | ND | 0.010 | 0.0051 | ug/l | | | 53494-70-5 | Endrin ketone | ND | 0.010 | 0.0051 | ug/l | | | 959-98-8 | Endosulfan-l | ND | 0.010 | 0.0050 | ug/l | | | 33213-65-9 | Endosulfan-II | ND | 0.010 | 0.0043 | ug/l | | | 76-44-8 | Heptachlor | ND | 0.010 | 0.0038 | ug/l | | | 1024-57-3 | Heptachlor epoxide | ND | 0.010 | 0.0065 | ug/l | | | 72-43-5 | Methoxychlor | ND | 0.020 | 0.0057 | ug/l | | | 8001-35-2 | Toxaphene | ND | 0.25 | 0.18 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | | | 877-09-8 | Tetrachloro-m-xylene | 96% | | 26-13 | 32% | | | 877-09-8 | Tetrachloro-m-xylene | 102% | | 26-13 | 32% | - 1 | | 2051-24-3 | Decachlorobiphenyl | 49% | | 10-11 | 18% | 1 | | 2051-24-3 | Decachlorobiphenyl | 47% | | 10-11 | | | | | - | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ### **Report of Analysis** Page 1 of 1 Client Sample ID: MW-20D Lab Sample ID: JC34340-19 Matrix: Method: **Project:** AQ - Ground Water SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a **Analytical Batch** File ID DF Analyzed By **Prep Date** Prep Batch 8G1665.D 01/04/17 JR 12/29/16 OP99539 G8G54 Run #1 1 Run #2 **Initial Volume** Final Volume 900 ml 10.0 ml Run #1 Run #2 #### Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | |------------|----------------------|--------|--------|--------|-------| | 309-00-2 | Aldrin | ND | 0.011 | 0.0067 | ug/l | | 319-84-6 | alpha-BHC | ND | 0.011 | 0.0067 | ug/l | | 319-85-7 | beta-BHC | ND | 0.011 | 0.0063 | ug/l | | 319-86-8 | delta-BHC | ND | 0.011 | 0.0051 | ug/l | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.011 | 0.0031 | ug/l | | 5103-71-9 | alpha-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 5103-74-2 | gamma-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 60-57-1 | Dieldrin | ND | 0.011 | 0.0040 | ug/l | | 72-54-8 | 4,4'-DDD | ND | 0.011 | 0.0042 | ug/l | | 72-55-9 | 4,4'-DDE | ND | 0.011 | 0.0068 | ug/l | | 50-29-3 | 4,4'-DDT | ND | 0.011 | 0.0055 | ug/l | | 72-20-8 | Endrin | ND | 0.011 | 0.0056 | ug/l | | 1031-07-8 | Endosulfan sulfate | ND | 0.011 | 0.0058 | ug/i | | 7421-93-4 | Endrin aldehyde | ND | 0.011 | 0.0057 | ug/l | | 53494-70-5 | Endrin ketone | ND | 0.011 | 0.0056 | ug/l | | 959-98-8 | Endosulfan-l | ND | 0.011 | 0.0055 | ug/l | | 33213-65-9 | Endosulfan-II | ND | 0.011 | 0.0048 | ug/l | | 76-44-8 | Heptachlor | ND | 0.011 | 0.0042 | ug/l | | 1024-57-3 | Heptachlor epoxide | ND | 0.011 | 0.0073 | ug/l | | 72-43-5 | Methoxychlor | ND | 0.022 | 0.0063 | ug/l | | 8001-35-2 | Toxaphene | ND | 0.28 | 0.20 | ug/i | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | | 877-09-8 | Tetrachloro-m-xylene | 81% | | 26-13 | 32% | | 877-09-8 | Tetrachloro-m-xylene | 87% | | 26-13 | 32% | | 2051-24-3 | Decachlorobiphenyl | 59% | | 10-11 | | | 2051-24-3 | Decachlorobiphenyl | 59% | | 10-11 | 18% | ND . Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank # Report of Analysis Page 1 of 1 Client Sample ID: RA-10S Lab Sample ID: JC34340-20 Matrix: AQ - Ground Water Method: SW846 8081B SW846 3510C Project: BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Run #1 Run #2 File ID 8G1666.D DF Analyzed 01/04/17 1 By JR Prep Date 12/29/16 Prep Batch OP99539 Q **Analytical Batch** G8G54 Initial Volume 900 ml Final Volume 10.0 ml Run #1 Run #2 #### Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | |------------|----------------------|--------|--------|--------|-------| | 309-00-2 | Aldrin | ND | 0.011 | 0.0067 | ug/l | | 319-84-6 | alpha-BHC | ND | 0.011 | 0.0067 | ug/l | | 319-85-7 | beta-BHC | ND | 0.011 | 0.0063 | ug/l | | 319-86-8 | delta-BHC | ND | 0.011 | 0.0051 | ug/l | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.011 | 0.0031 | ug/l | | 5103-71-9 | alpha-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 5103-74-2 | gamma-Chlordane | ND | 0.011 | 0.0051 | ug/l | | 60-57-1 | Dieldrin | ND | 0.011 | 0.0040 | ug/l | | 72-54-8 | 4,4'-DDD | ND | 0.011 | 0.0042 | ug/l | | 72-55-9 | 4,4'-DDE | ND | 0.011 | 0.0068 | ug/l | | 50-29-3 | 4,4'-DDT | ND | 0.011 | 0.0055 | ug/l | | 72-20-8 | Endrin | ND | 0.011 | 0.0056 | ug/l | | 1031-07-8 | Endosulfan sulfate | ND | 0.011 | 0.0058 | ug/l | | 7421-93-4 | Endrin aldehyde | ND | 0.011 | 0.0057 | ug/l | | 53494-70-5 | Endrin ketone | ND | 0.011 | 0.0056 | ug/l | | 959-98-8 | Endosulfan-I | ND | 0.011 | 0.0055 | ug/l | | 33213-65-9 | Endosulfan-II | ND | 0.011 | 0.0048 | ug/l | | 76-44-8 | Heptachlor | ND | 0.011 | 0.0042 | ug/l | | 1024-57-3 | Heptachlor epoxide | ND | 0.011 | 0.0073 | ug/l | | 72-43-5 | Methoxychlor | ND | 0.022 | 0.0063 | ug/l | | 8001-35-2 | Toxaphene | ND | 0.28 | 0.20 | ug/l | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts | | 877-09-8 | Tetrachloro-m-xylene | 103% | | 26-13 | 32% | | 877-09-8 | Tetrachloro-m-xylene | 110% | | 26-13 | 32% | | 2051-24-3 | Decachlorobiphenyl | 79% | | 10-11 | 8% | | 2051-24-3 | Decachlorobiphenyl | 73% | | 10-11 | 8% | | | | | | | | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank ## **Report of Analysis** Page I of 1 Client Sample ID: FB122216 Lab Sample ID: JC34340-21 Matrix: AQ - Field Blank Water Method: Project: SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/22/16 Date Received: 12/23/16 Percent Solids: n/a Q **Analytical Batch** File ID DF Analyzed By **Prep Date** Prep Batch 01/04/17 12/29/16 OP99539 G8G54 Run #1 8G1667.D 1 JR Run #2 Initial Volume Final Volume 900 ml 10.0 ml Run #1 Run #2 Pesticide TCL List | CAS No. | Compound | Result | RL | MDL | Units | | |------------|----------------------|--------|--------|--------|-------|---| | 309-00-2 |
Aldrin | ND | 0.011 | 0.0067 | ug/l | | | 319-84-6 | alpha-BHC | ND | 0.011 | 0.0067 | ug/l | | | 319-85-7 | beta-BHC | ND | 0.011 | 0.0063 | ug/l | | | 319-86-8 | delta-BHC | ND | 0.011 | 0.0051 | ug/l | | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.011 | 0.0031 | ug/l | | | 5103-71-9 | alpha-Chlordane | ND | 0.011 | 0.0051 | ug/l | | | 5103-74-2 | gamma-Chlordane | ND | 0.011 | 0.0051 | ug/l | | | 60-57-1 | Dieldrin | ND | 0.011 | 0.0040 | ug/l | | | 72-54-8 | 4,4'-DDD | ND | 0.011 | 0.0042 | ug/l | | | 72-55-9 | 4,4'-DDE | ND | 0.011 | 0.0068 | ug/l | | | 50-29-3 | 4,4'-DDT | ND | 0.011 | 0.0055 | ug/l | | | 72-20-8 | Endrin | ND | 0.011 | 0.0056 | ug/l | | | 1031-07-8 | Endosuifan sulfate | ND | 0.011 | 0.0058 | ug/l | | | 7421-93-4 | Endrin aldehyde | ND | 0.011 | 0.0057 | ug/l | | | 53494-70-5 | Endrin ketone | ND | 0.011 | 0.0056 | ug/l | | | 959-98-8 | Endosulfan-I | ND | 0.011 | 0.0055 | ug/l | | | 33213-65-9 | Endosulfan-II | ND | 0.011 | 0.0048 | ug/l | | | 76-44-8 | Heptachlor | ND | 0.011 | 0.0042 | ug/l | | | 1024-57-3 | Heptachlor epoxide | ND | 0.011 | 0.0073 | ug/l | | | 72-43-5 | Methoxychlor | ND | 0.022 | 0.0063 | ug/l | | | 8001-35-2 | Toxaphene | ND | 0.28 | 0.20 | ug/l | | | CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | its | | | 977 AD-9 | Tatenahlara-m-vulana | 00% | | 26-1 | 37% | 1 | | CAS No. | Surrogate Recoveries | Recoveries Run# 1 F | | | |-------------------|----------------------|---------------------|--|---------| | 877-09 - 8 | Tetrachloro-m-xylene | 90% | | 26-132% | | 877-09-8 | Tetrachloro-m-xylene | 95% | | 26-132% | | 2051-24-3 | Decachlorobiphenyl | 61% | | 10-118% | | 2051-24-3 | Decachlorobiphenyl | 57% | | 10-118% | ND = Not detected MDL = Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound Page 1 of 1 Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 Account: AMANYWP Anderson, Mulholland & Associates Project: BMSMC, Building 5 Area, PR | Sample | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |---------------|-----------|----|----------|----|-----------|------------|------------------| | JC34340-16MS | 4B68062.D | i | 01/03/17 | HT | n/a | n/a | V4B2797 | | JC34340-16MSD | 4B68063.D | 1 | 01/03/17 | HT | n/a | n/a | V4B2797 | | JC34340-16 | 4B68061.D | 1 | 01/03/17 | HT | n/a | n/a | V4B2797 | | | | | | | | | | The QC reported here applies to the following samples: JC34340-6, JC34340-12, JC34340-13, JC34340-15, JC34340-16, JC34340-17 | CAS No. | Compound | JC34340-16
ug/l Q | Spike
ug/l | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/l | MSD
% | RPD | Limits
Rec/RPD | |------------|-----------------------|----------------------|---------------|------------|----------------|---------------|-------------|----------|-----|-------------------| | 106-99-0 | 1,3-Butadiene | ND | 50 | 29.5 | 59 | 50 | 30.3 | 61 | 3 | 10-167/20 | | CAS No. | Surrogate Recoveries | MS | MSD | JC3 | 4340-16 | Limits | | | | | | 1868-53-7 | Dibromofluoromethane | 106% | 105% | 1059 | 6 | 76-120% | , | | | | | 17060-07-0 | 1,2-Dichloroethane-D4 | 107% | 108% | 1129 | 6 | 73-122% |) | | | | | 2037-26-5 | Toluene-D8 | 100% | 99% | 97% | | 84-119% | 1 | | | | | 460-00-4 | 4-Bromofluorobenzene | 100% | 100% | 1059 | V ₀ | 78-117% |) | | | | Method: SW846 8260C ^{* =} Outside of Control Limits. Page 1 of 3 Method: SW846 8270D # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 AMANYWP Anderson, Mulholland & Associates Account: Project: BMSMC, Building 5 Area, PR | Sample | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |-------------|-----------|----|----------|----|-----------|------------|------------------| | OP99540-MS | P110153.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | OP99540-MSD | P110154.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110152.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110195.D | 50 | 01/03/17 | RL | 12/29/16 | OP99540 | EP4893 | The QC reported here applies to the following samples: JC34340-15, JC34340-16 | CAS No. | Compound | JC34340-16
ug/l Q | Spike
ug/l | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/i | MSD
% | RPD | Limits
Rec/RPD | |-----------|----------------------------|----------------------|---------------|------------|---------|---------------|-------------|----------|-----|-------------------| | 95-57-8 | 2-Chlorophenol | ND | 54.1 | 31.3 | 58 | 51.3 | 30.9 | 60 | 1 | 49-110/20 | | 59-50-7 | 4-Chloro-3-methyl phenol | ND | 54.1 | 37.7 | 70 | 51.3 | 36.5 | 71 | 3 | 44-121/18 | | 120-83-2 | 2,4-Dichlorophenol | ND | 54.1 | 41.8 | 77 | 51.3 | 40.5 | 79 | 3 | 42-120/19 | | 105-67-9 | 2,4-Dimethylphenol | ND | 54.1 | 40.7 | 75 | 51.3 | 39.4 | 77 | 3 | 33-132/23 | | 51-28-5 | 2,4-Dinitrophenol | ND | 108 | 102 | 94 | 103 | 98.6 | 96 | 3 | 21-145/26 | | 534-52-1 | 4,6-Dinitro-o-cresol | ND | 54.1 | 49.0 | 91 | 51.3 | 45.7 | 89 | 7 | 25-134/27 | | 95-48-7 | 2-Methylphenol | ND | 54.1 | 30.0 | 56 | 51.3 | 30.5 | 59 | 2 | 47-112/18 | | 75 10 1 | 3&4-Methylphenol | ND | 54.1 | 29.0 | 54 | 51.3 | 28.3 | 55 | 2 | 44-113/19 | | 88-75-5 | 2-Nitrophenol | ND | 54.1 | 36.2 | 67 | 51.3 | 35.4 | 69 | 2 | 45-118/20 | | 100-02-7 | 4-Nitrophenol | ND | 54.1 | 34.0 | 63 | 51.3 | 33.6 | 66 | 1 | 23-144/28 | | 87-86-5 | Pentachlorophenol | ND | 54.1 | 54.7 | 101 | 51.3 | 50.7 | 99 | 8 | 25-151/25 | | 108-95-2 | Phenol | ND | 54.1 | 18.2 | 34 | 51.3 | 17.9 | 35 | 2 | 22-100/22 | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | ND | 54.1 | 47.0 | 87 | 51.3 | 45.7 | 89 | 3 | 44-122/21 | | 95-95-4 | 2,4,5-Trichlorophenol | ND | 54.1 | 44.3 | 82 | 51.3 | 43.1 | 84 | 3 | 51-124/20 | | 88-06-2 | 2,4,6-Trichlorophenol | ND | 54.1 | 45.4 | 84 | 51.3 | 43.7 | 85 | 4 | 53-120/21 | | 83-32-9 | Acenaphthene | ND | 54.1 | 40.0 | 74 | 51.3 | 37.8 | 74 | 6 | 52-120/23 | | 208-96-8 | Acenaphthylene | ND | 54.1 | 36.5 | 68 | 51.3 | 34.3 | 67 | 6 | 50-101/22 | | 98-86-2 | Acetophenone | ND | 54.1 | 37.2 | 69 | 51.3 | 35.8 | 70 | 4 | 31-141/23 | | 120-12-7 | Anthracene | ND | 54.1 | 41.8 | 77 | 51.3 | 39.0 | 76 | 7 | 54-117/22 | | 1912-24-9 | Atrazine | ND | 54.1 | 52.6 | 97 | 51.3 | 49.5 | 97 | 6 | 42-152/23 | | 100-52-7 | Benzaldehyde | ND | 54.1 | 30.0 | 56 | 51.3 | 29.4 | 57 | 2 | 10-164/30 | | 56-55-3 | Benzo(a)anthracene | ND | 54.1 | 42.8 | 79 | 51.3 | 40.2 | 78 | 6 | 40-123/24 | | 50-32-8 | Benzo(a)pyrene | ND | 54.1 | 41.4 | 77 | 51.3 | 39.6 | 77 | 4 | 41-127/25 | | 205-99-2 | Benzo(b)fluoranthene | ND | 54.1 | 43.5 | 80 | 51.3 | 41.7 | 81 | 4 | 39-127/27 | | 191-24-2 | Benzo(g,h,i)perylene | ND | 54.1 | 35.3 | 65 | 51.3 | 33.4 | 65 | 6 | 34-128/28 | | 207-08-9 | Benzo(k)fluoranthene | ND | 54.1 | 42.2 | 78 | 51.3 | 39.4 | 77 | 7 | 39-122/26 | | 101-55-3 | 4-Bromophenyl phenyl ether | ND | 54.1 | 43.9 | 81 | 51.3 | 40.3 | 79 | 9 | 51-124/23 | | 85-68-7 | Butyl benzyl phthalate | ND | 54.1 | 35.2 | 65 | 51.3 | 33.2 | 65 | 6 | 21-146/28 | | 92-52-4 | 1,1'-Biphenyl | ND | 54.1 | 37.4 | 69 | 51.3 | 35.3 | 69 | 6 | 27-142/23 | | 91-58-7 | 2-Chloronaphthalene | ND | 54.1 | 37.9 | 70 | 51.3 | 35.7 | 70 | 6 | 51-109/23 | | 106-47-8 | 4-Chloroaniline | ND | 54.1 | 22.2 | 41 | 51.3 | 20.5 | 40 | 8 | 10-110/55 | | 86-74-8 | Carbazole | ND | 54.1 | 39.4 | 73 | 51.3 | 37.3 | 73 | 5 | 52-116/22 | | 105-60-2 | Caprolactam | ND | 54.1 | 10.9 | 20 | 51.3 | 11.1 | 22 | 2 | 10-106/34 | | 218-01-9 | Chrysene | ND | 54.1 | 39.8 | 74 | 51.3 | welly | 74 | 5 | 41-128/24 | | 111-91-1 | bis(2-Chloroethoxy)methane | ND | 54.1 | 33.1 | 61 | 51.3 | - | 100 | 7 | 46-120/24 | | 111-44-4 | bis(2-Chloroethyl)ether | ND | 54.1 | 32.6 | 60 | 51.3 | 33.7 | 96 | 3 | 42-123/28 | ^{* =} Outside of Control Limits. fael Infante Page 2 of 3 # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 Account: AMANYWP Anderson, Mulholland & Associates Project: BMSMC, Building 5 Area, PR | Sample | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |-------------|-----------|----|----------|----|-----------|------------|------------------| | OP99540-MS | P110153.D | 1 | 12/30/16 | IJ | 12/29/16 | OP99540 | EP4891 | | OP99540-MSD | P110154.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110152.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110195.D | 50 | 01/03/17 | RL | 12/29/16 | OP99540 | EP4893 | The QC reported here applies to the following samples: Method: SW846 8270D JC34340-15, JC34340-16 | | | JC34340 | D-16 | Spike | MS | MS | Spike | MSD | MSD | | Limits | |-----------|-----------------------------|---------|------|-------|------|------|-------|------|------|-----|-----------| | CAS No. | Compound | ug/l | Q | ug/I | ug/l | % | ug/l | ug/l | % | RPD | Rec/RPD | | 108-60-1 | bis(2-Chloroisopropyl)ether | ND | | 54.1 | 31.4 | 58 | 51.3 | 31.2 | 61 | 1 | 41-117/25 | | 7005-72-3 | 4-Chlorophenyl phenyl ether | ND | | 54.1 | 45.6 | 84 | 51.3 | 43.0 | 84 | 6 | 48-121/21 | | 121-14-2 | 2,4-Dinitrotoluene | ND | | 54.1 | 47.3 | 88 | 51.3 | 46.4 | 90 | 2 | 54-123/27 | | 606-20-2 | 2,6-Dinitrotoluene | ND | | 54.1 | 44.9 | 83 | 51.3 | 42.7 | 83 | 5 | 55-125/26 | | 91-94-1 | 3,3'-Dichlorobenzidine | ND | | 108 | 36.7 | 34 | 103 | 27.1 | 26 | 30 | 10-107/47 | | 123-91-1 | 1,4-Dioxane | 1520 b | | 54.1 | 1580 | 0* a | 51.3 | 1800 | 0* a | 13 | 10-119/31 | | 53-70-3 | Dibenzo(a,h)anthracene | ND | | 54.1 | 37.2 | 69 | 51.3 | 34.8 | 68 | 7 | 35-130/27 | | 132-64-9 | Dibenzofuran | ND | | 54.1 | 39.7 | 73 | 51.3 | 38.5 | 75 | 3 | 53-112/22 | | 84-74-2 | Di-n-butyl phthalate | ND | | 54.1 | 39.4 | 73 | 51.3 | 37.4 | 73 | 5 | 38-129/23 | | 117-84-0 | Di-n-octyl phthalate | ND | | 54.1 | 36.8 | 68 | 51.3 | 34.7 | 68 | 6 | 35-145/26 | | 84-66-2 | Diethyl phthalate | ND | | 54.1 | 40.9 | 76 | 51.3 | 39.5 | 77 | 3 |
16-136/30 | | 131-11-3 | Dimethyl phthalate | ND | | 54.1 | 41.0 | 76 | 51.3 | 40.0 | 78 | 2 | 10-143/39 | | 117-81-7 | bis(2-Ethylhexyl)phthalate | ND | | 54.1 | 34.0 | 63 | 51.3 | 32.1 | 63 | 6 | 34-141/28 | | 206-44-0 | Fluoranthene | ND | | 54.1 | 45.8 | 85 | 51.3 | 42.8 | 83 | 7 | 47-123/24 | | 86-73-7 | Fluorene | ND | | 54.1 | 43.6 | 81 | 51.3 | 41.6 | 81 | 5 | 56-117/22 | | 118-74-1 | Hexachlorobenzene | ND | | 54.1 | 44.1 | 82 | 51.3 | 40.6 | 79 | 8 | 46-125/24 | | 87-68-3 | Hexachlorobutadiene | ND | | 54.1 | 37.5 | 69 | 51.3 | 36.9 | 72 | 2 | 26-121/24 | | 77-47-4 | Hexachlorocyclopentadiene | ND | | 108 | 64.3 | 59 | 103 | 63.4 | 62 | 1 | 10-133/31 | | 67-72-1 | Hexachloroethane | ND | | 54.1 | 33.8 | 63 | 51.3 | 35.0 | 68 | 3 | 35-111/26 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | | 54.1 | 39.8 | 74 | 51.3 | 37.3 | 73 | 6 | 32-130/30 | | 78-59-1 | Isophorone | ND | | 54.1 | 34.9 | 65 | 51.3 | 33.3 | 65 | 5 | 47-126/23 | | 90-12-0 | 1-Methylnaphthalene | ND | | 54.1 | 36.1 | 67 | 51.3 | 34.2 | 67 | 5 | 34-124/25 | | 91-57-6 | 2-Methylnaphthalene | ND | | 54.1 | 37.4 | 69 | 51.3 | 35.1 | 68 | 6 | 34-123/24 | | 88-74-4 | 2-Nitroaniline | ND | | 54.1 | 39.9 | 74 | 51.3 | 40.0 | 78 | 0 | 46-137/23 | | 99-09-2 | 3-Nitroaniline | ND | | 54.1 | 24.4 | 45 | 51.3 | 26.5 | 52 | 8 | 10-110/50 | | 100-01-6 | 4-Nitroaniline | ND | | 54.1 | 37.1 | 69 | 51.3 | 34.3 | 67 | 8 | 38-118/25 | | 98-95-3 | Nitrobenzene | ND | | 54.1 | 34.9 | 65 | 51.3 | 33.0 | 64 | 6 | 35-130/25 | | 621-64-7 | N-Nitroso-di-n-propylamine | ND | | 54.1 | 34.3 | 63 | 51.3 | 33.2 | 65 | 3 | 45-123/22 | | 86-30-6 | N-Nitrosodiphenylamine | ND | | 54.1 | 39.7 | 73 | 51.3 | 36.7 | 72 | 8 | 46-123/24 | | 85-01-8 | Phenanthrene | ND | | 54.1 | 41.8 | 77 | 51.3 | 39.4 | 77 | 6 | 48-121/23 | | 129-00-0 | Pyrene | ND | | 54.1 | 39.8 | 74 | 51.3 | 37.9 | 74 | 5 | 43-124/26 | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | ND | | 54.1 | 48.5 | 90 | 51.3 | 45.2 | 88 | 7 | 25-142/24 | ### Page 3 of 3 # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 Account: AMANYWP Anderson, Mulholland & Associates Project: BMSMC, Building 5 Area, PR | Sample | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |-------------|-----------|----|----------|----|-----------|------------|------------------| | OP99540-MS | P110153.D | 1 | 12/30/16 | IJ | 12/29/16 | OP99540 | EP4891 | | OP99540-MSD | P110154.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110152.D | 1 | 12/30/16 | JJ | 12/29/16 | OP99540 | EP4891 | | JC34340-16 | P110195.D | 50 | 01/03/17 | RL | 12/29/16 | OP99540 | EP4893 | The QC reported here applies to the following samples: Method: SW846 8270D JC34340-15, JC34340-16 | CAS No. | Surrogate Recoveries | MS | MSD | JC34340-16 | JC34340-16 | Limits | |-----------|----------------------|-----|-----|------------|------------|---------| | 367-12-4 | 2-Fluorophenol | 44% | 47% | 41% | 0% * c | 14-88% | | 4165-62-2 | Phenol-d5 | 34% | 34% | 30% | 0% * c | 10-110% | | 118-79-6 | 2,4,6-Tribromophenol | 86% | 86% | 96% | 0% * c | 39-149% | | 4165-60-0 | Nitrobenzene-d5 | 65% | 66% | 71% | 0% * c | 32-128% | | 321-60-8 | 2-Fluorobiphenyl | 74% | 73% | 79% | 0% * c | 35-119% | | 1718-51-0 | Terphenyl-d14 | 67% | 63% | 87% | 0% * c | 10-126% | - (a) Outside control limits due to high level in sample relative to spike amount. - (b) Result is from Run #2. - (c) Outside control limits due to dilution. # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 Account: AMANYWP Anderson, Mulholland & Associates Project: BMSMC, Building 5 Area, PR | Sample | File ID | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch | |--------------|-----------|----|----------|----|-----------|------------|------------------| | OP99540A-MS | 3M67757.D | I | 12/31/16 | SG | 12/29/16 | OP99540A | E3M3155 | | OP99540A-MSD | 3M67758.D | 1 | 12/31/16 | SG | 12/29/16 | OP99540A | E3M3155 | | JC34340-16 | 3M67751.D | 1 | 12/30/16 | SG | 12/29/16 | OP99540A | E3M3155 | The QC reported here applies to the following samples: Method: SW846 8270D BY SIM Page 1 of 1 JC34340-15, JC34340-16 | CAS No. | Compound | JC34340-10
ug/l Q | • | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/l | MSD
% | RPD | Limits
Rec/RPD | |----------|------------------------|----------------------|--------|------------|---------|---------------|-------------|----------|-------|-------------------| | 56-55-3 | Benzo(a)anthracene | ND | 1.03 | 0.773 | 75 | 1.05 | 0.591 | 56 | 27 | 25-135/33 | | 50-32-8 | Benzo(a)pyrene | ND | 1.03 | 0.675 | 66 | 1.05 | 0.420 | 40 | 47* a | 10-116/38 | | 205-99-2 | Benzo(b)fluoranthene | ND | 1.03 | 0.756 | 74 | 1.05 | 0.549 | 52 | 32 | 10-131/40 | | 207-08-9 | Benzo(k)fluoranthene | ND | 1.03 | 0.712 | 69 | 1.05 | 0.481 | 46 | 39 | 10-120/45 | | 218-01-9 | Chrysene | ND | 1.03 | 0.740 | 72 | 1.05 | 0.576 | 55 | 25 | 31-125/33 | | 53-70-3 | Dibenzo(a,h)anthracene | ND | 1.03 | 0.557 | 54 | 1.05 | 0.352 | 33 | 45 | 10-116/48 | | 193-39-5 | Indeno(1,2,3-cd)pyrene | ND | 1.03 | 0.515 | 50 | 1.05 | 0.314 | 30 | 48 | 10-116/48 | | 91-20-3 | Naphthalene | 0.236 | 1.03 | 0.875 | 62 | 1.05 | 0.730 | 47 | 18 | 23-140/36 | | 123-91-1 | 1,4-Dioxane | 1670 E | B 1.03 | 1240 | 0* p | 1.05 | 1450 | 0* p | 16 | 20-160/30 | | | | | | | | | | | | | | CAS No. | Surrogate Recoveries | MS | MSD | JC34340-16 | Limits | |-----------|----------------------|-----|-----|------------|---------| | 4165-60-0 | Nitrobenzene-d5 | 79% | 66% | 100% | 24-125% | | 321-60-8 | 2-Fluorobiphenyl | 68% | 59% | 86% | 19-127% | | 1718-51-0 | Terphenyl-d14 | 66% | 46% | 81% | 10-119% | - (a) Analytical precision exceeds in-house control limits. - (b) Outside control limits due to high level in sample relative to spike amount. ^{* =} Outside of Control Limits. 111-27-3 111-27-3 Hexanol Hexanol # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 Account: AMANYWP Anderson, Mulholland & Associates Project: BMSMC, Building 5 Area, PR | Sample
JC34340-16MS
JC34340-16MSD
JC34340-16 | File ID
GH107995.D
GH107996.D
GH107994.D | DF
I
I | Analyzed
12/30/16
12/30/16
12/30/16 | By
XPL
XPL
XPL | Prep Date
n/a
n/a
n/a | Prep Batch
n/a
n/a
n/a | Analytical Batch
GGH5600
GGH5600
GGH5600 | |---|---|--------------|--|-------------------------|--------------------------------|---------------------------------|---| | | | | | | | | | The QC reported here applies to the following samples: Method: SW846-8015C (DAI) Page 1 of 1 JC34340-10, JC34340-11, JC34340-12, JC34340-15, JC34340-16 88% 85% | CAS No. | Compound | JC34340-16
ug/l Q | Spike
ug/l | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/l | MSD
% | RPD | Limits
Rec/RPD | |---------|----------------------|----------------------|---------------|------------|----------|---------------|-------------|----------|-----|-------------------| | 64-17-5 | Ethanol | ND | 5000 | 4400 | 88 | 5000 | 5180 | 104 | 16 | 58-145/27 | | 78-83-1 | Isobutyl Alcohol | ND | 5000 | 4800 | 96 | 5000 | 5110 | 102 | 6 | 69-131/25 | | 67-63-0 | Isopropyl Alcohol | ND | 5000 | 4430 | 89 | 5000 | 4700 | 94 | 6 | 70-133/28 | | 71-23-8 | n-Propyl Alcohol | ND | 5000 | 4690 | 94 | 5000 | 5200 | 104 | 10 | 66-137/29 | | 71-36-3 | n-Butyl Alcohol | ND | 5000 | 4230 | 85 | 5000 | 4530 | 91 | 7 | 63-131/25 | | 78-92-2 | sec-Butyl Alcohol | ND | 5000 | 5370 | 107 | 5000 | 5700 | 114 | 6 | 64-136/25 | | 67-56-1 | Methanol | ND | 5000 | 4110 | 82 | 5000 | 4670 | 93 | 13 | 48-148/34 | | CAS No. | Surrogate Recoveries | MS | MSD | JC | 34340-16 | Limits | | | | | 89% 85% 56-145% 56-145% 87% 88% ^{* =} Outside of Control Limits. Page 1 of 1 Method: SW846 8081B # Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC34340 AMANYWP Anderson, Mulholland & Associates Account: Project: BMSMC, Building 5 Area, PR | File ID | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch | |----------|----------------------|--------------------------|--|--|--|--| | 8G1632.D | 1 | 01/03/17 | JŘ | 12/29/16 | OP99539 | G8G54 | | 8G1633.D | 1 | 01/03/17 | JR | 12/29/16 | OP99539 | G8G54 | | 8G1631.D | 1 | 01/03/17 | JR | 12/29/16 | OP99539 | G8G54 | | 801031.D | 1 | 01/03/17 | JK | 12/29/10 | OF99339 | 08034 | | | 8G1632.D
8G1633.D | 8G1632.D 1
8G1633.D 1 | 8G1632.D 1 01/03/17
8G1633.D 1 01/03/17 | 8G1632.D 1 01/03/17 JR
8G1633.D 1 01/03/17 JR | 8G1632.D 1 01/03/17 JR 12/29/16
8G1633.D 1 01/03/17 JR 12/29/16 | 8G1632.D 1 01/03/17 JR 12/29/16 OP99539
8G1633.D 1 01/03/17 JR 12/29/16 OP99539 | The QC reported here applies to the following samples: JC34340-15, JC34340-16, JC34340-18, JC34340-19, JC34340-20, JC34340-21 | CAS No. | Compound | JC34340-16
ug/l Q | Spike
ug/l | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/l | MSD
% | RPD | Limits
Rec/RPD | |------------|---------------------|----------------------|---------------|------------|---------|---------------|-------------|----------|-----|-------------------| | | | | | - 4 | | | | | | | | 309-00-2 | Aldrin | ND | 0.25 | 0.26 | 104 | 0.25 | 0.26 | 104 | 0 | 37-159/40 | | 319-84-6 | alpha-BHC | ND | 0.25 | 0.28 | 112 | 0.25 | 0.28 | 112 | 0 | 37-164/37 | | 319-85-7 | beta-BHC | ND | 0.25 | 0.27 | 108 | 0.25 | 0.27 | 108 | 0 | 46-151/36 | | 319-86-8 | delta-BHC | ND | 0.25 | 0.30 | 120 | 0.25 | 0.31 | 124 | 3 | 32-168/36 | | 58-89-9 | gamma-BHC (Lindane) | ND | 0.25 | 0.29 | 116 | 0.25 | 0.29 | 116 | 0 | 44-160/37 | | 5103-71-9 | alpha-Chlordane | ND | 0.25 | 0.39 | 156
| 0.25 | 0.38 | 152 | 3 | 38-160/35 | | 5103-74-2 | gamma-Chlordane | ND | 0.25 | 0.29 | 116 | 0.25 | 0.29 | 116 | 0 | 39-157/37 | | 60-57-1 | Dieldrin | ND | 0.25 | 0.30 | 120 | 0.25 | 0.30 | 120 | 0 | 42-161/36 | | 72-54-8 | 4,4'-DDD | ND | 0.25 | 0.30 | 120 | 0.25 | 0.32 | 128 | 6 | 40-161/36 | | 72-55-9 | 4,4'-DDE | ND | 0.25 | 0.25 | 100 | 0.25 | 0.26 | 104 | 4 | 34-158/36 | | 50-29-3 | 4,4'-DDT | ND | 0.25 | 0.16 | 64 | 0.25 | 0.16 | 64 | 0 | 41-173/33 | | 72-20-8 | Endrin | ND | 0.25 | 0.29 | 116 | 0.25 | 0.29 | 116 | 0 | 44-166/35 | | 1031-07-8 | Endosulfan sulfate | ND | 0.25 | 0.29 | 116 | 0.25 | 0.30 | 120 | 3 | 46-161/36 | | 7421-93-4 | Endrin aldehyde | ND | 0.25 | 0.30 | 120 | 0.25 | 0.27 | 108 | 11 | 34-149/36 | | 53494-70-5 | Endrin ketone | ND | 0.25 | 0.28 | 112 | 0.25 | 0.28 | 112 | 0 | 44-157/36 | | 959-98-8 | Endosulfan-I | ND | 0.25 | 0.29 | 116 | 0.25 | 0.30 | 120 | 3 | 43-154/35 | | 33213-65-9 | Endosulfan-II | ND | 0.25 | 0.30 | 120 | 0.25 | 0.31 | 124 | 3 | 40-162/35 | | 76-44-8 | Heptachlor | ND | 0.25 | 0.27 | 108 | 0.25 | 0.27 | 108 | 0 | 33-153/37 | | 1024-57-3 | Heptachlor epoxide | ND | 0.25 | 0.29 | 116 | 0.25 | 0.29 | 116 | 0 | 45-154/37 | | 72-43-5 | Methoxychlor | ND | 0.25 | 0.26 | 104 | 0.25 | 0.25 | 100 | 4 | 48-169/32 | | 8001-35-2 | Toxaphene | ND | | ND | | | ND | | nc | 50-150/30 | CAS No. | Surrogate Recoveries | MS | MSD | JC34340-16 | Limits | |-----------|----------------------|-----|-----|------------|---------| | 877-09-8 | Tetrachloro-m-xylene | 97% | 94% | 91% | 26-132% | | 877-09-8 | Tetrachloro-m-xylene | 96% | 94% | 91% | 26-132% | | 2051-24-3 | Decachlorobiphenyl | 63% | 75% | 80% | 10-118% | | 2051-24-3 | Decachlorobiphenyl | 49% | 63% | 70% | 10-118% | ^{* =} Outside of Control Limits. | _SGS_ ACCUTEST NJ | | μ
FB
EB
1016 | TEL 732- | 5GS A
Route J.
329-0200 | Coutest -
10. Days
FAX: | Dayton
on, NJ 01
732-329 | 1499 14
810 | Ro | | | | 7 | 78 | 02 | 800 | 32 | 10 | _1_ | Chiday C. | pringi A | | | F_2 | |--|--|-----------------------|---------------|-------------------------------|-------------------------------|----------------------------------|----------------|--------|---------------|----------|-------------|-------------------------|--------------|-------------|--|-------------------------|--|----------------------------|--------------------|----------------|----------|------------|---------------------------------------| | Campany Name | N 4. 1722 | A ARM | Act Projec | | 1-1-1 | S. Haller | W-1.40 | ADin. | Tank Ser | WARLS | 2645 | U some | 71 | ni terri | ASTE WA | Valent II | Kan'nin. | | | | J (| <u> 34</u> | 340 | | Company Nerve | Project Name: | | 14 | | | | | - 20. | TE MAN ZA | | Facility Of | 25,5947 | or Med | (Jacon | diAn | lydia | (30e° | 1E91 | CODE | 7-1 | (CV) | BU | Matrix Codes | | Anderson Mulholland & Associates | 4th Q 2018 | Groundwater Sa | molina - O | insite Mi | elle | | | | | | | | | | | | | Ä, | | | | | | | 1 | Street | | | | | ्रोक्षः स्रो | 11.746.5 | | L'HETT | 0900 4 W | in the same | 1 | | 1 | 1 | 1 | | ត្រី | | | | 1 | DW - Drowing Wate
GW - Ground Wate | | 2760 Westchester Avenue, Suita 417 C4y Stee Zp | City | | State | Billing | Informat
ny Name | ion (III diff | erent fro | m Ac | port to) | | |] | | ľ | | | | 1 | | € | | | WW - Water
SW - Surface Wate | | Purchase NY 1057 | 7 Humacao | | PR | Comes | ny ruama | | | | | | | 1 | | | | | 1 3 | BSIM+DBANTH, BSIM+1123PYR, | | NOTE BELOW | | | SO Sot
SL-Sagor | | Project Contact E-mail | Prosect # | | | Street / | diress | _ | _ | | | | | | | | | | 85M+BANTH, BSM+BAPYRN,
B5M+BBFLUAN, BSM+BKFLUAN | E | | <u> </u> | 1 | | SED-Sedement
Dt - Ou | | Terry Taylor Phone II Fat III | | | | | | | | | | | | li | | | | 9 | 4 | 3 | | 5 | | | LIQ Dehar Liquid | | 9:4-251-0400 | Chent Purchase | Circler II | | Cay | | | Sia | lap | | Zφ | | | | | | BIKS+ZIKNAP | E # | ē | | 1 19 | | | AIR - Air
SOL - Other Solid | | Sampler(s) Name(s) Phone # | Provest Manage | | | Attentio | | | | | | | | ļ ļ | ١. | 1 | = | ŝ | 8 8 | 룷 | | | | | WP - Wps
FB-Fett Blank | | | Terry Taylor | | | I AGENT BO | 11. | | | | | | | | 뒫 | | 음 | 8 | HA | 97 | Į | E | Ιi | - 1 | RB-Rinse Blank | | F04 | | | Delegram | _ | T | | _ N | -1- | of Images | - Rette | _ | <u> </u> | PROBIPESTICL | ы | B2270SIM14DIOX | BMS+WNAP, | 돌림 | +CHRYS, | 1 5 | CHEMISTRY (SEE | | | TB-Tres Blane | | Annual Field SD / Point of Collection | | | | 5 | 1 | | | _ | | 1 = 1 | X | DBOISLBA | = | AB827050 | 785 | 3. | 3 5 | 불분 | 8 | 吾 | | | | | J MW-14 | MECHOLVINO | Dete | Tithe | by | 6 Augus | d of human | 2 3
3 | Ped | O V | P O | 3 | ă | 2 | ABI | B22 | 2 | 2 2 | BS88+CHR
BS84+NAP | VIZE013BUTADM | MET | | - [| LAB USE ONLY | | 1 1 1 1 1 1 1 1 1 | | 12-20-10 | 141t | R5 | GW/ | 8 | 6 | Т | TZI | П | $\neg \neg$ | $\overline{\mathbf{x}}$ | | ダ | $\overline{\mathbf{x}}$ | V | $\overline{\nabla}$ | V | V | - | - | | | | 2 MW-18 | | 12-20-16 | 1413 | NR | GW | 18 | 912 | ſ. | तदा | 11 | | 文 | | Ż | $\overline{\mathbf{x}}$ | Î | 0 | 4 | 10 | V | | | =96- | | 3 FB122016 | <u> </u> | 12-20-16 | 1450 | R5 | FB | 8 | 6 | 7 | ĪĒ. | + | + | (A) | _ | Į. | $\overline{\mathcal{C}}$ | $\langle \cdot \rangle$ | 0 | 5 | \(\) | \wedge | ┝━┼ | | 286 | | 4 E B 122116 | | 12-21-16 | 1017 | Ris | EB | 8 | _ | + | 13 | 1-1 | + | \diamondsuit 1 | \dashv | ₹I | Č. | ÷ | \ <u>`</u> | 5 | ~ | - | | - | E87 | | 5 TB122016 NRA | | 12-20-16 | 1413 | 1 1 | TR | | 2 | - | + | ++ | ╌┼╌┦ | Δ | | 4 | _ | _ | X | γ., | \hookrightarrow | | | _ | V938 | | 6 TB122016 RSB | | 12-20-16 | 411 | 1 | TA | 2 | 1-1 | + | ++ | ╀┼ | | | - | | | _ | \Box | | A. | \square | | _[. | 1,939 | | 7 BR-1 | | 12-21-16 | 1254 | 110 | | | 4 | + | ╫ | + | | . | - | _ | _ | | | | \mathbf{X} | | | | 127 | | 8 BR-1 DUP | | | | NV | ĕΜ | 8 | 4 | 4 | 2 | ++ | -11 | <u>.X</u> | _ | N |
Δ | X | X | Y | X | , | T. | | 635 | | 9 38-2 | | 12-21-16 | 1336 | WK | GW | 8 | - | 1 | 12 | | | $\mathbf{x} \mathbf{L}$ | | <u> XI</u> | X | XI | K | XI | X | \neg | | \Box | | | 10 BR-3 | | 12-71-16 | 1250 | R5 | GW | | 12 | Щ | 5 | | 山 | X | | X | XI | XI | X | X | 54 | X | | _ | | | | | 12-21-16 | <u>1454</u> | RS | 6W | 8 | 6 | | 12 | Γ | TT | VI | \neg | VI | X | VI | X | X | X | | _ | | | | 11 BR-4 | | 12-21-16 | 1512 | NR | GM | 8 | 6 | | 12 | | 11 | X | | V | V | ۲Ì | X | X | V | - | | | | | 12 FB122116 | | | 1532 | RS | FBI | 8 | 6 | \top | 12 | 1-1- | 11 | | 7 | Ø | \text{\tin}\ext{\ti}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | X | VI | | \[\] | - | - | - | | | Turnaround Time (Business days) | STATE OF THE PARTY | | AND THE PARTY | distributes." | | Data (| alveral | ie In | formatic | n | | ind he | ACTO | CTU! | TRANSPORT | 4671 | Comm | nersta / | Specie | Instruc | runa lii | Sam Paris | A Charles To La 12 | | (X) Std. 16 Business Days | - 828) 10 poveranty | THE CIVITS | | | | at "A" (Le
at "B" (Le | | | | YASP (| | | V | VET C | HEMI | STRY | INCLU | DES | ALK, | KFE3, I | MN. VR | SK17: | 5CH4, XNO30. | | # Day RUSH INITIAL AS | ESSMENT_ | 118 CM | 1, | | | Fairing 3 H4
Nr. A. C. City | | | | YASP (| | y B | 5 | 04. A | ND S | | | | | | | | | | ☐ 3 Day RUSH UNIT AL AS | | | | | J Reduce | id . | | | $\overline{}$ | DO For | | | _1 | | | | | | | | | | i | | LABEL VE | RIFICATION | | | | | | | | | ther | - | | - 1 | | | | | | | | | | ŀ | | Definer | | | | Convinue | 70.7 Elete c
20.7 A* + R | of Known C
Pluits Only | Committee | rotoc | of Repo | rting | | | - | | | _ | | | | | | | j | | Emergency & Rush T/A data avadable VIA Labbra | | | | N.I Flacker | and a Day | er - ne e | | | | | | | | am cl | n iewe | ntae · | ie | dad - | | | | | | | Red Spectrad by Copey | San | npie Custody mus | be docum | ented bel | ow each | time sen | ples ch | ange | posse | salon, | includ | ing cou | rier de | livery. | g grive | поту | 15 Ven | med (| ipon n | e Cenpt | in the I | Labor | atory | | 1 Mary 12-2 | 761700 | Fed | EX | | | 2 | 1. | d By | اع | | | | | D. | on The | | 46 " | reeved | By: | 1 | | K7 | | | Refrequence by failure: | | locatered By | | | | R. | | d By: | | | _ | | | | 1:45
m Time | | 12 | | | 4 | | | | | Retroposted by: Date Term: | | lenowed By: | | | | 4 | | | | | П | | | | | | . 4 | ******* | Pri i | | | | | | 5 | | <u> </u> | | | | | 57. | -
- | 57 | 7 | | nci
Conset | Pro | nerred
L | 33 | _ | | | | De ha | and Co | Top | 70. | JC34340: Chain of Custody Page 1 of 4 ### CHAIN OF CUSTODY | | ٧J | | | | | ccutesi = [| | | | | | - | | | | | | | | | | | | |---|-------------|-----------------|--------------------|------------------|------------|-------------|-----------------------------|------------|-----------|---------------|-----------------------|-------------|--------------|-------------------|----------------|----------------------|--|---|-------------------------|--------------------------------|---------------|--------------|----------------------------------| | • | 10 | | | | | | n, NJ 088 | | | | | Y'E | 772 | 8 Z | 60 | 63 | 210 |] Botto | Debbet Cor | Marie P | | | | | | | | | TEL 732-3 | | FAX 1 | | 99/3. | 180 | | | BC. | E Acquisson | Chapto IF | | | | 858 4 | a-cuduat Jo | ab # | 70 | 36 | 1340 | | Client / Reporting Information 15 | 30 IS | V MAN AND | 经进行专作品 | 2 Projec | | | THE | 4 1 | 120 | ediere. | AMEN? | 70 30 | dela a | | 100 | 1 (2) | Daniel S | TE OF | ione | n rweig | AF SU | | _ | | Company Name | P | Toject Name | | | | | | | | | | | 7.0 | 1 | | 7 41 4 | 1 | 1 | _ | STORY. | | MANUFACTURE. | Matrix Codes | | Anderson Mulholland & Associates | 41 | th Q 2016 G | roundwater Sa | mpling - Or | nalte W | ella | | | | | | | | 1 | | | | BSIM+CHRYS, BSIM+DBANTH, BSIM+1123PYR, BSIM+NAP | | | | - 1 | DW - Drining Wate | | Sirect Address | 51 | itent | | | -6.0 | 4 | Albert C | 57.7 | bac ., | 1,1 | TRACE | Li | | | | | 1 | 12 | | l _ | 1 1 | - 1 | GW Ground Water
WW Water | | 2700 Westchester Avenue, Suite 417 | Zei C | dy | | State | Billing | Andpersunts | on (If differ | कार्थ हेर | an Reg | orl to) | | _ | | | | | l _ | å | | BELOW | | - | SW Surface Water
SCI - Scri | | Purchase NY | 10577 H | | | PR | Contra | PTY TEATRE | | | | | | | | | [| | , X | 8 | | <u></u> | | - 1 | St. Slutige | | | | POWECE OF | | | Street | Address | | _ | - | | _ | - | | ľ | 1 | | 돌림 | Ę | 1 | Ë | | - 1 | SED-Sedetient
CI Oil | | Terry Taylor | | | | | | | | | | | | - | | | | | 15 3 | 8 | | 皇 | | | LIG : Other Liquid
AIR - Air | | | Fast C | Jieril Purchase | Order# | | CEP | | | S | Q16 | | Zgi | _ | | 1 | | BMS+2MNAP | E 5 | 12 | | Ä | | - 1 | SOL Other Solid WP - Wide | | 914-251-0400
Bensele(8) Neme(5) | Phone it Pr | Ythect Manager | | | Affender | | | | | | | _ | Ι. | 1 | × | ŝ | IS E | SS | Z | 2 | | | FB-Fest Dans
EB-Ecupment Duns | | | | erry Taylor | | | - Indianal | | | | | | | | 1 2 | | ğ | <u> </u> | 본축 | 6 | Ι¥ | STF | | - 1 | RB-Rirse Blank | | | | 9113 1 0 9 10 V | | Colocton | _ | J | 1 | | former : | d proserve | d Building | - [4 | 100 | 1 | 8 | MA | 14 E | 田子 | | CHEMISTRY (SEE MOTE | | - 1 | TR-Trip Blann | | 108 | - 1 | | | | Earthples | | lf | T. | 12 | luli | x 8 | DEDISTINA | PBOBIPESTTCL | ABUZTOSL | B8270SIM14DIOX | BMS+WNAP, | BSIM+BAHTH, BSIM+BAPYRN,
BSIM+BBFLUAN, BSIM+BKFLUAN | ÷ = | VZZ6013BUTADN | 5 | | - f | | | Field ID Point of Collection | - 4 | MCONDIVIALIF. | Dane | Teno | by | Mahm | | δ § | £ 5 | V a | MECH
BICCO | 8 | 2 | 1 | B | 30 | 28 28 | BS IS | P 2 | WET | | | LAB USE ONLY | | 13 TB122116NR | | | 12-21-16 | 1512 | | TB | 2 | 2 | П | П | | \neg | | | | | | | V | | | — f | | | 14 TB122116RS | | | 12-21-16 | 1454 | | 18 | 2 | 1 | П | \sqcap | \Box | \top | | | | | | | Ŷ | | _ | \dashv | | | 15 EB 12 22/6 | | | 12-22-6 | 942 | R5 | EA | 10 | 3 | Π | 14 | | $\exists x$ | ·Υ | X | X | V | V | ~ | \Rightarrow | - | _ |
\dashv | | | 1 R A - 10 P | | | 12-72-16 | 1239 | NR | GW | 10 1/ | 7 | \vdash | 4 | | Ti | - 5 | X | Ż | ÷ | * | 会 | | | - | \dashv | | | 161 RA-10D MS | | | 12-22-16 | Mna | NR | ริพ | 10 | | + | 4 | | 15 | 1/ | ΙŻ. | \checkmark | \odot | ₩ | 5 | S | - | \rightarrow | | | | RA-10D MSL | 2 | | 12-72-16 | 1445 | NR | SW | | | 11 | 141 | | 15 | V | 7 | Ş١ | 7 | X | / | $\overline{\mathbf{x}}$ | | \rightarrow | - | | | 17 TRIZ 22/6NRA | 7 | | 12-22-16 | 1445 | 1 | TB | 2 | 5 | \forall | †" | | +- | + | | | | | | | | -+ | ᅪ | | | 18 MW-205 | | | 12-22-6 | 1311 | R5 | /W | 2 | | \sqcap | 12 | \Box | _ | V | | | | _ | | \sim | | \rightarrow | | | | 19 MW-20D | | | 12-22-16 | 1522 | RS | Gui | 2 | + | | 17 | | | 文 | | \dashv | \neg | _ | - | | | | {- | | | 0 RA-105 | | | 2-22-16 | 11.04 | NR | GW | | + | | 17 | | + | Ź | \vdash | \neg | | | | | \dashv | | + | —— | | 21 FB122216 | | | 12-22-16 | 1420 | RS | FB | -/- | + | | 111 | | ┪ | 攵 | | \rightarrow | \neg | | - | - | | \rightarrow | - | | | | | | | 1.7 | - | | | ╈ | | H | | + | 1/ | | \dashv | -1 | | \dashv | \rightarrow | - | | | | | (furnaround Time (flustress says) | Ĉn: | A Comment Air | al Living Transact | Proceptor of all | w2.5d | | Data D | ilver | Abia ird | OFFINITION | | *ZCB | 44.72 | 100 | - A | 400 | Come | nents / | Source | Instruc | ance III | 100 (100) | md 4474,4000 co | | X Std. 18 Business Days | Appr | reved By (84) A | course PM; / Date: | | | | al "A" (Lev | | | | /ASP Cate | rgory A | | WETO | HEMI | STRY | INCL | UDES | ALK, | KFE3, | MIN, VA | SK17! | 5CH4, XNO30, | | E Bay NUSH | _ | | | | | | 41 "B" { Lov
Lavel 3+4 } | ał 2) | | | (ASP Cate | | | 504, 4 | ND S | | | | | | | | | | 3 Day RUSH | | | | | | U Reduce | | | | $\overline{}$ | ate Porme
3D Forma | | | | | | | | | | | | l | | 2 Day RUSH | | | | | | Commercia | 11 "C" | | | _ | her | | _ | | | | | | | | | |] | | 1 Day RUSH | _ | | | | | | of Known Q | | | | | | | | | | | | | | | | | | Emergency & Rush T/A data available VIA Labore | _ | | | | | | estale Crity | | | | | Summer | | | | | | | | | | | | | with the state of | | Sam | ple Custody mus | t be docum | ented be | low each | Att + CIC Su
(Ime sam) | ples c | chenge | potser | alon, Inc | lucting | courter | oampi
selivery | e Mye | ntory | IS VE | nfied u | rpon re | eceipl | in the L | _abor | alory | | YVal/ told | 2-22-16 | 1200 1 | Fed | FV | , | | Pop | | | سايه | | | | | 2/23/ | 1.11 | ¥5" | lecowed | | 1 | | | | | | ste Time; | R | to be a second Syl | | | | Re | بشوطا | را اد | | | | | | <i>27€ 4</i> / | | | 2
No conved | Be: | $\stackrel{\sim}{\rightarrow}$ | | _ | | | Raimquished by Del | ne Time: | 3 | reserved By: | | | | 4 | a bouter ! | Bool P | | | Paul | | | | | | 1 | | | | | | | | | 5 | | | | | | 5 7 | Z-: | 577 | | Not set. | d | Procery | | ppl a shi | - | | | Die jes | Ce | Parker Ton | | JC34340: Chain of Custody Page 2 of 4 #### **EXECUTIVE NARRATIVE** SDG No: JC34340 Laboratory: **Accutest, New Jersey** Analysis: SW846-8260C Number of Samples: Location: BMSMC, Building 5 Area Humacao, PR **SUMMARY:** Nineteen (19) samples were analyzed for selected VOAs of the TCL list (1,3-butadiene) by method SW846-8260C. Samples were validated following USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes. **Critical issues:** None Major: None Minor: None **Critical findings:** None Major findings: None Minor findings: None **COMMENTS:** Results are valid and can be used for decision making purposes. Reviewers Name: Rafael Infante Chemist License 1888 Signature: January 27, 2017 Date: #### SAMPLE ORGANIC DATA SAMPLE SUMMARY . . . Sample ID: JC34340-1 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-2 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-3 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: AQ - Field Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-4 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: AQ - Equipment Blank METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-5 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: AQ - Trip Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-6 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: AQ - Trip Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-7 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-8 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-9 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-10 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-11 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-12 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: AQ - Field Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-13 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: AQ - Trip Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-14 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: AQ - Trip Blank Water METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes Sample ID: JC34340-15 Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: AQ - Equipment Blank METHOD: 8260C **Analyte Name** Result Units Dilution Factor Lab Flag Validation Reportable u Yes 1,3-butadiene 5.0 ug/L 1 Sample ID: JC34340-16 Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater METHOD: 8260C Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable Yes 5.0 ug/I 1 U 1,3-butadiene Sample ID: JC34340-17 Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: AQ - Trip Blank Water METHOD: 8260C Reportable Analyte Name Result Units Dilution Factor Lab Flag Validation 5.0 1 U Yes 1,3-butadiene ug/l Sample ID: JC34340-16MS Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater METHOD: 8260C Lab Flag Validation Reportable Analyte Name Result Units Dilution Factor 1,3-butadiene 29.5 ug/l 1 Yes Sample ID: JC34340-16MSD Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater METHOD: 8260C Reportable **Analyte Name** Result Units Dilution Factor Lab Flag Validation Yes 1,3-butadiene 30.3 ug/l 1 | | Project Number:_JC34340 | |---|--| | REVIEW OF VOLATILE ORG
Low/Medium Volatile Da | | | The following guidelines for evaluating volatile organics vactions. This document will assist the reviewer in us informed decision and in better serving the needs of assessed according to USEPA data validation guida precedence: USEPA Hazardous Waste Support Section Low/Medium Volatile Data Validation. July, 2015. The listed on the data review worksheets are from the prince of the prince of the section of the data review worksheets. | sing professional judgment to make more
the data users. The sample results were
ince documents in the following order of
on SOP No. HW-33A Revision 0 SOM02.2.
The QC criteria and data validation actions | | The hardcopied (laboratory name)Accutestbeen reviewed and the quality control and performance cincluded: | data package received has data summarized. The data review for VOCs | | Lab. Project/SDG No.:JC34340 |
C34340-13;_JC34340-14;_JC34340-17 | | X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike DuplicateOverallComments:Selected_VOA_(1,3-Butadiene)_f | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits from_the_TCL_list_(SW846_8260C) | | Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondelect Reviewer: Adam Adam Reviewer: | | | Date:January_27,_2017 | | ## **DATA REVIEW WORKSHEETS** # DATA COMPLETENESS | MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED | |---------------------|---------------------|---------------| | 4 | | | | - 10 | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | - | | | | | | | | | | - 10 | A | | | | | | | | <u> </u> | | | | | | - | | | | | | | | φ. | | | | | | | 2 77.7 | | | | | | | | | 9 | | | 874.1 / 1 | | | | | 10 | | | | | | All criteria were met) | <u>_</u> | |------------------------|----------| | Criteria were not met | | | and/or see below | | #### **HOLDING TIMES** The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis. Complete table for all samples and note the analysis and/or preservation not within criteria | SAMPLE ID | DATE SAMPLED | DATE ANALYZED | pН | ACTION | |-----------------|-------------------------|-----------------------|----------|------------------------| | | | | | î î | | | | | | | | | | | | | | All samples ana | lyzed within method red | commended holding tim | e. Sampl | es properly preserved. | | | | | | | | | | | | | | | | | 1 | | ### Criteria Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 14 days from sample collection. Cooler temperature (Criteria: 4 + 2 °C): 5.4° C - OK ### Actions ### Aqueous samples - a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary. - b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R). - c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary. - d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R). - e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ). #### Non-aqueous samples a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment. - b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary. - c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R). - d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R). # Qualify TCLP/SPLP samples - a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified. - b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R). - c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified. - d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R). Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary | | Preserved Criteria | | Action | | | |-------------|--------------------|-------------------------------------|---|--------------------------------|--| | Matrix | | Detected
Associated
Compounds | Non-Detected
Associated
Compounds | | | | | NT. | <7.1 ··· | | 11.5 | | | | No | ≤ 7 days | No qi | nalification | | | A culcous | No | > 7 days | J | R | | | Aqueous | Yes | ≤ 14 days | No qualification | | | | | Yes | > 14 days | J | R | | | Nan Aguana | No | ≤ 14 days | J | Professional judgment, UJ or R | | | Non-Aqueous | Yes | ≤ 14 days | No qualification | | | | | Yes/No | > 14 days | J | R | | | TCLP/SPLP | Yes | ≤ 14 days | No qualification | | | | TCLP/SPLP | No | > 14 days | J | R | | | TCLP/SPLP | ZHE performed within
the 14-day technical
holding time | No qualification | | | |---|---|---------------------------|---|--| | TCLP/SPLP | ZHE performed outside
the 14-day technical
holding time | J | R | | | TCLP/SPLP
aqueous &
TCLP/SPLP
leachate | Analyzed within 7 days | No qualification | | | | TCLP/SPLP
aqueous &
TCLP/SPLP
leachate | Analyzed outside 7 days | J | R | | | Sample tempera upon receipt at t | ture outside 4°C ± 2°C
he laboratory | Use professional judgment | | | | Holding times g | rossly exceeded | J R | | | | All criteria were metX_ | | |---------------------------------|--| | Criteria were not met see below | | # **GC/MS TUNING** The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits __X___The BFB performance results were reviewed and found to be within the specified criteria. __X___BFB tuning was performed for every 12 hours of sample analysis. **NOTES:** All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable. **NOTES:** No data should be qualified based on BFB failure. Instances of this should be noted in the narrative. All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95. #### Actions: If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R). If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/572, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes. **Note:** State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements. Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram. | Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound. | | | | | |--|-----|---------|-----------|--| | List | the | samples | affected: | | | | | | | | | | | | | | | - | | | | | | | | | | | If mass calibration is in error, all associated data are rejected. | All criteria were met _ | _X | |-------------------------|----| | Criteria were not met | | | and/or see below | | # CALIBRATION VERIFICATION Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. | | Dat | e of init | ial calibration:12/ | 08/16 | | |------|------------|-----------|----------------------------------|----------------------|---------------------| | | Dat | es of co | ontinuing (initial) calibrat | tion:12/08/16 | | | | Dat | es of co | ontinuing calibration: |
12/31/16;_01/03/17;_ | 01/04/17 | | | Dat | es of e | nding calibration: | • | | | | Inst | rument | ID numbers: | GCMS4B_ | | | | | | el: | | | | | | | | | | | DATE | LAB
ID# | FILE | CRITERIA OUT
RFs, %RSD, %D, r | COMPOUND | SAMPLES
AFFECTED | **Note:** Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria. Closing calibration check verification not included in data package. No action taken, professional judgment. # Criteria The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified. A separate worksheet should be filled for each initial curve Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum %D ¹ | Closing
Maximum %D | |---------------------------------------|----------------|-----------------|------------------------------------|-----------------------| | Dichlorodifluoromethane | 0.010 | 25.0 | ±40.0 | ±50.0 | | Chloromethane | 0.010 | 20.0 | ±30.0 | ±50.0 | | Vinyl chloride | 0.010 | 20.0 | ±25.0 | ±50.0 | | Bromomethane | 0.010 | 40.0 | ±30.0 | ±50.0 | | Chloroethane | 0.010 | 40.0 | ±25.0 | ±50.0 | | Trichlorofluoromethane | 0.010 | 40.0 | ±30.0 | ±50.0 | | 1,1-Dichloroethene | 0.060 | 20.0 | ±20.0 | ±25.0 | | 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.050 | 25.0 | ±25.0 | ±50.0 | | Acetone | 0.010 | 40.0 | ±40.0 | ±50.0 | | Carbon disulfide | 0.100 | 20.0 | ±25.0 | ±25.0 | | Methyl acetate | 0.010 | 40.0 | ±40.0 | ±50.0 | | Methylene chloride | 0.010 | 40.0 | ±30.0 | ±50.0 | | trans-1,2-Dichloroethene | 0.100 | 20.0 | ±20.0 | ±25.0 | | Methyl tert-butyl ether | 0.100 | 40.0 | ±25.0 | ±50.0 | | 1,1-Dichloroethane | 0.300 | 20.0 | ±20.0 | ±25.0 | | cis-1,2-Dichloroethene | 0.200 | 20.0 | ±20.0 | ±25.0 | | 2-Butanone | 0.010 | 40.0 | ±40.0 | ±50.0 | | Bromochloromethane | 0.100 | 20.0 | ±20.0 | ±25.0 | | Chloroform | 0.300 | 20.0 | ±20.0 | ±25.0 | | 1,1,1-Trichloroethane | 0.050 | 20.0 | ±25.0 | ±25.0 | | Cyclohexane | 0.010 | 40.0 | ±25.0 | ±50.0 | | Carbon tetrachloride | 0.100 | 20.0 | ±25.0 | ±25.0 | | Benzene | 0.200 | 20.0 | ±20.0 | ±25.0 | | 1,2-Dichloroethane | 0.070 | 20.0 | ±20.0 | ±25.0 | | Trichloroethene | 0.200 | 20.0 | ±20.0 | ±25.0 | | Methylcyclohexane | 0.050 | 40.0 | ±25.0 | ±50.0 | | 1,2-Dichloropropane | 0.200 | 20.0 | ±20.0 | ±25.0 | | Bromodichloromethane | 0.300 | 20.0 | ±20.0 | ±25.0 | | cis-1,3-Dichloropropene | 0.300 | 20.0 | ±20.0 | ±25.0 | | 4-Methyl-2-pentanone | 0.030 | 25.0 | ±30.0 | ±50.0 | | Toluene | 0.300 | 20.0 | ±20.0 | ±25.0 | | trans-1.3-Dichloropropene | 0.200 | 20.0 | ±20.0 | ±25.0 | | 1,1,2-Trichloroethane | 0.200 | 20.0 | ±20.0 | ±25.0 | | Tetrachloroethene | 0.100 | 20.0 | ±20.0 | ±25.0 | | 2-Hexanone | 0.010 | 40.0 | ±40.0 | ±50.0 | | Dibromochloromethane | 0.200 | 20.0 | ±20.0 | ±25.0 | | 1.2-Dibromoethane | 0.200 | 20.0 | ±20.0 | ±25.0 | | Chlorobenzene | 0.400 | 20.0 | ±20.0 | ±25.0 | | Ethylbenzene | 0.400 | 20.0 | ±20.0 | ±25.0 | | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum %D ¹ | Closing
Maximum | |---------------------------------------|----------------|-----------------|------------------------------------|--------------------| | ın,p-Xylene | 0.200 | 20.0 | ±20.0 | ±25.0 | | o-Xylene | 0.200 | 20.0 | ±20.0 | ±25.0 | | Styrene | 0.200 | 20.0 | ±20.0 | ±25.0 | | Bromoform | 0.100 | 20.0 | ±25.0 | ±50.0 | | Isopropylbenzene | 0.400 | 20.0 | ±25.0 | ±25.0 | | 1.1.2,2-Tetrachloroethane | 0.200 | 20.0 | ±25.0 | ±25.0 | | 1.3-Dichlorobenzene | 0.500 | 20.0 | ±20.0 | ±25.0 | | 1.4-Dichlorobenzene | 0.600 | 20.0 | ±20.0 | ±25.0 | | 1.2-Dichlorobenzene | 0.600 | 20.0 | ±20.0 | ±25.0 | | 1,2-Dibromo-3-chloropropane | 0.010 | 25.0 | ±30.0 | ±50.0 | | 1.2,4-Trichlorobenzene | 0.400 | 20.0 | ±30.0 | ±50.0 | | 1,2,3-Trichlorobenzene | 0.400 | 25.0 | ±30.0 | ±50.0 | | Deuterated Monitoring Compound | | | | | | Vinyl chloride-d3 | 0.010 | 20.0 | ±30.0 | ±50.0 | | Chloroethane-ds | 0.010 | 40.0 | ±30.0 | ±50.0 | | 1.1-Dichloroethene-d2 | 0.050 | 20.0 | ±25.0 | ±25.0 | | 2-Butanone-ds | 0.010 | 40.0 | ±40.0 | ±50.0 | | Chloroform-d | 0.300 | 20.0 | ±20.0 | ±25.0 | | 1.2-Dichloroethane-d4 | 0.060 | 20.0 | ±25.0 | ±25.0 | | Benzene-do | 0.300 | 20.0 | ±20.0 | ±25.0 | | 1,2-Dichloropropane-d6 | 0.200 | 20.0 | ±20.0 | ±25.0 | | Toluene-ds | 0.300 | 20.0 | ±20.0 | ±25.0 | | trans-1,3-Dichloropropene-d4 | 0.200 | 20.0 | ±20.0 | ±25.0 | | 2-Hexanone-ds | 0.010 | 40.0 | ±40.0 | ±50.0 | | 1.1.2,2-Tetrachloroethane-d2 | 0.200 | 20.0 | ±25.0 | ±25.0 | | 1.2-Dichlorobenzene-d4 | 0.400 | 20.0 | ±20.0 | ±25.0 | If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV. # Actions: - 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R). - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R). - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment. - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary. - d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data. - 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines: - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum: - i. Qualify detects for that compound(s) as estimated (J). - ii. Qualify non-detected volatile target compounds using professional judgment. - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation): - i. Qualify detects outside of the linear portion of the curve as estimated (J). - ii. No qualifiers are required for detects in the linear portion of the curve. - iii. No qualifiers are required for volatile target compounds that were not detected. - c. If the low-point of the curve is outside of the linearity criteria: - i. Qualify low-level detects in the area of non-linearity as estimated (J). - ii. No qualifiers are required for detects in the linear portion of the curve. - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit. **Note:** If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data. State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance. Note, for the Laboratory COR action, if calibration criteria are grossly exceeded. Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary | Criteria | Action | | | |---|---|-----------------------------------|--| | Criteria | Detect | Non-detect | | | Initial Culibration not performed at specified frequency and sequence | Use professional
judgment
R | Use professional
judgment
R | | | Initial Calibration not performed at the specified concentrations | J | UJ | | | RRF < Minimum RRF in Table for target analyte | Use professional
judgment
J+ or R | R | | | RRF > Minimum RRF in Table for target analyte | No qualification | No qualification | | | %RSD > Maximum %RSD in Table
for target analyte | J | Use professional judgment | | | %RSD ≤ Maximum %RSD in Table
for target analyte | No qualification | No qualification | | | All criteria were met _ | X | |-------------------------|---| | Criteria were not met | | | and/or see below | | # Continuing Calibration Verification (CCV) NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration. The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune. All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data. # Action: - 1. If a CCV (opening and closing) was not run at the
appropriate frequency, qualify data using professional judgment. - 2. Qualify all volatile target compounds in Table shown before using the following criteria: - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R). - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R). - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ). - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ). - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary. f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data. Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data. State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance. Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded. Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary | Criteria for Opening | Criteria for | eria for Action | | | |---|---|--|-----------------------------------|--| | CCV | Closing CCV | Detect | Non-detect | | | CCV not performed at required frequency | CCV not performed
at required
frequency | Use professional
judgment
R | Use professional
judgment
R | | | CCV not performed at specified concentration | CCV not performed at specified concentration | Use professional
judgment | Use professional
judgment | | | RRF < Minimum RRF in Table 2 for target analyte | RRF < Minimum
RRF in Table for
target analyte | Use professional
judgment
J or R | R | | | RRF > Minimum RRF in Table 2 for target analyte | RRF ≥ Minimum
RRF in Table for
target analyte | No qualification | No qualification | | | %D outside the
Opening Maximum
%D limits in Table 2
for target analyte | %D outside the
Closing Maximum
%D limits in Table
for target analyte | J | נט | | | % D within the inclusive Opening Maximum % D limits in Table 2 for target analyte | %D within the inclusive Closing Maximum %D limits in Table for target analyte | No qualification | No qualification | | | All criteria were met | _X | | |-----------------------|----|--| | Criteria were not met | | | | and/or see below | | | # BLANK ANALYSIS RESULTS (Sections 1 & 2) The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. List the contamination in the blanks below. High and low levels blanks must be treated separately. The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices. # Laboratory blanks The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis. | DATE
ANALYZED | LAB ID | LEVEL/
MATRIX | COMPOUND | CONCENTRATION UNITS | |---------------------|---------------|-------------------|-------------------------|----------------------------------| | | - | | ks | | | | | | | | | Field/Equipme | nt/Trip blank | | | | | If field or trip bl | | nt, the data revi | ewer should evaluate th | nis data in a similar fashion as | | DATE
ANALYZED | LAB ID | LEVEL/
MATRIX | COMPOUND | CONCENTRATION UNITS | | | | | /equipment_blanks_ass | sociated_with_this_data | | 2172 | | | | | | | | | | | | All criteria were met _X | | |--------------------------|--| | Criteria were not met | | | and/or see below | | # BLANK ANALYSIS RESULTS (Section 3) #### Blank Actions Note: All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems. Samples taken from a drinking water tap do not have associated field blanks. When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor. Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis | Blank Type | Blank Result | Sample Result | Action for Samples | |-----------------|---------------|---------------------|-------------------------------| | | Detects | Not detected | No qualification required | | | < CRQL * | < CRQL* | Report CRQL value with a U | | | CRQL. | ≥ CRQL* | No qualification required | | Method, | | < CRQL* | Report CRQL value with a U | | Storage, Field, | > CRQL * | ≥ CRQL* and ≤ | Report blank value for sample | | Trip, | | blank concentration | concentration with a U | | TCLP/SPLP | | ≥ CRQL* and > | No qualification required | | LEB. | | blank concentration | 140 quantication required | | Instrument** | = CRQL* | ≤ CRQL* | Report CRQL value with a U | | | - CRQL | > CRQL* | No qualification required | | | Gross | Detects | Report blank value for sample | | | contamination | Delects | concentration with a U | ^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone. Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs: ^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L. # Notes: High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria. | CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED
SAMPLES | |----------------------------|----------|------------|----------|-----|---------------------| | | | | | | - | | | | | | | | | | | | | -3 | 100 | | | | | | All criteria were met __X__ Criteria were not met and/or see below ____ # DEUTERATED MONITORING COMPOUNDS (DMCs) Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits | DMC | %R for Water Sample | %R for Soil Sample | |------------------------|---------------------|--------------------| | Vinyl chloride-d3 | 60-135 | 30-150 | | Chloroethane-d5 | 70-130 | 30-150 | | 1,1-Dichloroethene-d2 | 60-125 | 45-110 | | 2-Butanone-d5 | 40-130 | 20-135 | | Chloroform-d | 70-125 | 40-150 | | 1.2-Dichloroethane-d4 | 70-125 | 70-130 | | Benzene-d6 | 70-125 | 20-135 | | 1,2-Dichloropropane-d6 | 70-120 | 70-120 | | Toluene-d8 | 80-120 | 30-130 | | trans-1,3- | 60-125 | 30-135 | | Dichloropropene-d4 | | | | 2-Hexanone-d5 | 45-130 | 20-135 | | 1,1,2,2- | 65-120 | 45-120 | | Tetrachloroethane-d2 | | | | 1,2-Dichlorobenzene-d4 | 80-120 | 75-120 | NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive. # Action: Are recoveries for DMCs in volatile samples and blanks must be within the limits
specified in the Table above. Yes? or No? NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive. List the DMCs that may fail to meet the recovery limits Sample ID Date DMCs % Recovery Action **Note:** DMCs recoveries within the required limits and within the guidance document performance criteria (80 – 120). Other non-deuterated surrogates added to the samples, % recoveries within laboratory control limits. Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed. # Action: - 1. For any recovery greater than the upper acceptance limit: - a. Qualify detected associated volatile target compounds as estimated high (J+). - b. Do not qualify non-detected associated volatile target compounds. - 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit: - a. Qualify detected associated volatile target compounds as estimated low (J-). - b. Qualify non-detected associated volatile target compounds as estimated (UJ). - 3. For any recovery less than 10%: - a. Qualify detected associated volatile target compounds as estimated low (J-). - b. Qualify non-detected associated volatile target compounds as unusable (R). - 4. For any recovery within acceptance limits, no qualification of the data is necessary. - In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action. - 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance. Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary | | Action | | | |---|-----------------------------|--------------------------------------|--| | Criteria | Detect Associated Compounds | Non-detected Associated
Compounds | | | %R < 10% | J- | R | | | 10% ≤ %R < Lower Acceptance Limit | J- | נט | | | Lower Acceptance Limit \leq % R \leq Upper Acceptance Limit | No qualification | No qualification | | | %R > Upper Acceptance Limit | J+ | No qualification | | TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS | Vinyl chloride-d3 (DMC-1) | Chloroethane-ds (DMC-2) | 1,1-Dichloroethene-d2 (DMC-3) | |--|--|--| | Vinyl chloride | Dichlorodifluoromethane
Chloromethane | trans-1,2-Dichloroethene | | | Bromomethane | cis-1,2-Dichloroethene | | | Chloroethane | 1,1-Dichioroeinene | | | Carbon disulfide | | | 2-Butanone-ds (DMC-4) | Chloroform-d (DMC-5) | 1,2-Dichloroethane-d4 (DMC-6) | | Acetone | 1.1-Dichloroethane | Trichlorofluoromethane | | 2-Butanone | Bromochloromethane | 1,1,2-Trichloro-1,2,2-trifluoroethane | | | Chloroform | Methyl acetate | | | Dibromochloromethane | Methylene chloride | | | Bromoform | Methyl-tert-butyl ether | | | | 1.1.1-Trichloroethane | | | | Carbon tetrachloride | | | | 1.2-Dibromoethane | | | | 1.2-Dichloroethane | | Benzene-ds (DMC-7) | 1,2-Dichloropropane-ds
(DMC-8) | Toluene-da (DMC-9) | | Benzene | Cyclohexane | Trichloroethene | | | Methylcyclohexane | Toluene | | | 1.2-Dichloropropane | Tetrachloroethene | | | Bromodichloromethane | Ethylbenzene | | | | o-Xylene | | | | m.p-Xylene | | | | Styrene | | | | Isopropylbenzene | | trans-1,3-Dichloropropene-d4
(DMC-10) | 2-Hexanone-ds (DMC-11) | 1,1,2,2-Tetrachloroethane-d2
(DMC-12) | | cis-1,3-Dichloropropene | 4-Methyl-2-pentanone | 1,1,2,2,-Tetrachloroethane | | trans-1,3-Dichloropropene | 2-Hexanone | 1.2-Dibromo-3-chloropropane | | 1,1,2-Trichloroethane | | | | 1,2-Dichlorobenzene-d4 | | | | (DMC-13) | | | | Chlorobenzene | | | | 1.3-Dichlorobenzene | | | | 1.4-Dichlorobenzene | | | | 1.2-Dichlorobenzene | | | | 1.2.4-Trichlorobenzene | | | | 1,2.3-Trichlorobenzene | | | | All criteria were met | _X | | |-----------------------|----|---| | Criteria were not met | | | | and/or see below | | _ | # MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit. NOTES: Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD. For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified. # 1. MS/MSD Recoveries and Precision Criteria The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed. List the %Rs, RPD of the compounds which do not meet the criteria. | Sample ID:_JC34340-1MS/-1MSD | Matrix/Level: | Groundwater | |--------------------------------|---------------|-------------| | Sample ID:_JC34340-16MS/-16MSD | Matrix/Level: | Groundwater | | Sample ID:_ JC34180-5MS/-5MSD | Matrix/Level: | Groundwater | **Note:** MS/MSD % recoveries and RPD within laboratory control limits. prince the latest three princes the same three t #### Note: - * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit. - * If QC limits are not available, use limits of 70 130 %. # Actions: 1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. | QUALITY | %R < LL | %R > UL | |--------------------|---------|---------| | Positive results | J | J | | Nondetects results | R | Accept | MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples: If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ). If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R). A separate worksheet should be used for each MS/MSD pair. | All criteria were met _ | _X | | |-------------------------|----|--| | Criteria were not met | | | | and/or see below | | | # LABORATORY CONTROL SAMPLE (LCS) ANALYSIS This data is generated to determine accuracy of the analytical method for various matrices. 1. LCS Recoveries Criteria Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo. List the %R of compounds which do not meet the criteria | | LCS ID | COMPOUND | % R | QC LIMIT | |--------------|-----------------|-------------------------------|------|----------| | _Recoveries_ | _(blank_spike)_ | within_laboratory_control_lin | nits | # Note: - * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit - * If QC limits are not available, use limits of 70 130 %. #### Actions: | QUALITY | %R < LL | %R > UL | |--------------------|---------|---------| | Positive results | J | J | | Nondetects results | R | Accept | All analytes in the associated sample results are qualified for the following criteria. If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R). If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R). 2. Frequency Criteria: Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. IX. | | | All criteria were metX
Criteria were not met
and/or see below | |----------------------------|--|---| | FIELD/LABOR | ATORY DUPLICATE PRECISION | | | Sample IDs:
Sample IDs: | _JC34340-2/-2DUP
_JC34340-7/JC34340-8 | Matrix:Groundwater
Matrix:Groundwater | Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. The project QAPP should be reviewed for project-specific
information. **NOTE:** In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative. | COMPOUND | SQL | SAMPLE CONC. | DUPLICATE
CONC. | RPD | ACTION | |--|-----|--------------|--------------------|-----|--------| | | | | | | | | Field/laboratory duplicate analyzed with this data package. PRD within required criteria, ≤ 50 % for target analytes detected at concentration > 5x the SQL. | | | | | | #### Actions: Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment: If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ). If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate. If both sample and duplicate results are not detected, no action is needed. | All criteria were met | _X | |-----------------------|----| | Criteria were not met | | | and/or see below | | # X. INTERNAL STANDARD PERFORMANCE The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation. | DATE | SAMPLE ID | IS OUT | IS AREA | ACCEPTABLE RANGE | ACTION | |-----------------|-------------------|---------------------|-----------------------|------------------|--------| | Internal standa | ord area counts w | vithin the required | d criteria for all sa | ımples. | | | | | | | | | | | | | | | | # Action: - If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below): - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-). - b. Do not qualify non-detected associated compounds. - 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration): - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+). - b. Qualify non-detected associated compounds as unusable (R). - 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary. - 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met. - 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary. Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance. - 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R). - 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects. Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary | | Act | Action | | |--|--------------------------------------|--|--| | Criteria | Detected
Associated
Compounds* | Non-detected
Associated
Compounds* | | | Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration) | J- | No
qualification | | | Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration) | J+ | R | | | Area counts \geq 50% but \leq 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration) | No qualification | | | | RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | R ** | R | | | RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | No qual | ification | | ^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met. | All criteria were met _ | Х | |-------------------------|---| | Criteria were not met | | | and/or see below | | # TARGET COMPOUND IDENTIFICATION | - | | | | |----|------|-----|---| | ,, | rite | mo. | 4 | | u | | | _ | Is the Relative Retention Times (RRTs) of reported compounds within ±0.06 RRT units of the standard RRT [opening Continuing Calibration Verification (CCV) or mid-point standard from the initial calibration]. Yes? or No? List compounds not meeting the criteria described above: | Sample ID | Compounds | Actions | |-----------|---|---------| | | ======================================= | | | | | | | | | | | | | | | | | | Mass spectra of the sample compound and a current laboratory-generated standard [i.e., the mass spectrum from the associated calibration standard (opening CCV or mid-point standard from initial calibration)] must match according to the following criteria: - a. All ions present in the standard mass spectrum at a relative intensity greater than 10% must be present in the sample spectrum. - b. The relative intensities of these ions must agree within ±20% between the standard and sample spectra (e.g., for an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30-70%). - c. lons present at greater than 10% in the sample mass spectrum, but not present in the standard spectrum, must be evaluated by a reviewer experienced in mass spectral interpretation. List compounds not meeting the criteria described above: | Sample ID | Compounds | Actions | |-----------|-----------|---------| | | | | | * | | - | | | | | | | | | | | | | | | | | # Action: - 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R). - Use professional judgment to qualify the data if it is determined that cross-contamination has occurred. - Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes. # TENTATIVELY IDENTIFIED COMPOUNDS (TICS) NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS). | | []c | |--|------| | | | | | | | Sample ID | Compound | Sample ID | Compound | |-----------|---|-----------|----------| | | ======================================= | | | | | 1 | | | | | | | | | | | | | # Action: - 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J). - 2. General actions related to the review of TIC results are as follows: - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J). - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory. - 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene - isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound). - 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons). - 5. Target
compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable". - 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results. - 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications. - 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs | All criteria were met _ | Χ_ | _ | |-------------------------|----|---| | Criteria were not met | | | | and/or see below | | | # SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS) #### Action: - 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data. - 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below). - 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs. - 4. Results between MDL and CRQL should be qualified as estimated "J". - 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported. Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples | Criteria | Action | | | | | | |--------------------------|-------------------------------|-----------------------------------|--|--|--|--| | | Detected Associated Compounds | Non-detected Associated Compounds | | | | | | % Moisture < 70.0 | No qualification | | | | | | | 70.0 < % Moisture < 90.0 | J | UJ | | | | | | % Moisture > 90.0 | J R | | | | | | The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation: Sample ID JC34340-1 MS 1,3-butadiene RF = 0.619 [] = (135288)(50)/(0.619)(225639) = 48.4 ppb Ok | All criteria were met _ | _X | | |-------------------------|----|--| | Criteria were not met | | | | and/or see below | | | | 3. | Percent Solids | |----|---------------------------------------| | | List samples which have ≥ 70 % solids | | | | | | | | | | | | | # **QUANTITATION LIMITS** # A. Dilution performed | SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION | |-----------|-----------------|---------------------| (C) | 6.0 | | | | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | # OTHER ISSUES | A. Syster | m Performance | | |----------------|--|---| | List samples q | ualified based on the degradation of system | n performance during simple analysis: | | Sample ID | Comments | Actions | | _No_degradati | ion_of_system_performance_observed. | | | Action: | | | | degraded duri | | determined that system performance has Laboratory Program COR any action as a cantly affected the data. | | B. Overal | Assessment of Data | | | List samples q | ualified based on other issues: | | | Sample ID | Comments | Actions | | | l_issues_observed_that_require_qualificati
l_for_decission_purposes | | | Action: | | | - 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed. - Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform 2. the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA). #### **EXECUTIVE NARRATIVE** SDG No: JC34340 Laboratory: Accutest, New Jersey Analysis: SW846-8270D Number of Samples: 14 Location: BMSMC, Building 5 Area Humacao, PR SUMMARY: Fourteen (14) samples were analyzed for selected SVOCs following method SW846-8270D and Selected PAHs and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 — Revision O. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes. **Critical issues:** None Major: None Minor: None Critical findings: None Major findings: None Minor findings: 1. All samples extracted and analyzed within method recommended holding time except for the cases described in the Data Review Worksheet. Sample preservation was appropriate. No action taken, professional judgment. Samples were re-extracted outside holding time for confirmation. 2. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Results for were qualified as estimated (J or UJ) in affected samples. No closing calibration verification included in data package. No action taken, professional judgment. QC samples were not validated. - **3.** Sample JC34340-16MS/-MSD have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank. No action taken. - 1,4-dioxane found in method blank. No action taken. 1,4-dioxane not detected in sample JC34340-15 and reported from the scan mode run in sample JC34340-16. - **4.** Surrogate standards recovered within laboratory control limits except for the cases described in the Data Review Worksheet. No action taken. Surrogates not recovered in samples JC34340-16 due to dilution. No action taken. **5.** MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. No qualification made based on RPD results, professional judgment. No action taken for analytes not meeting the MS/MSD % recovery control limit; outside control limits due to high level in sample relative to spike amount. MS/MSD % recovery results apply only to the unspiked sample; No qualification made on unspiked samples from another jobs. - **6.** Field duplicate analyzed as part of this data package. RPD within the required guidance document criteria < 50 % for detected target analytes above 5 SQL except for the cases described in the Data Review Worksheet. Results for 1,4-dioxane qualified as estimated (J) in sample and duplicate. - **7.** The acid surrogate standard not added to the LCS analyzed on 12/28/16. The affected samples either was not re-extracted because no sample was left or extracted outside the method recommended holding time. No action taken, professional judgment. COMMENTS: Results are valid and can be used for decision making purposes. **Reviewers Name:** Rafael Infante Chemist License 1888 Signature: Date: January 28, 2017 # SAMPLE ORGANIC DATA SAMPLE SUMMARY Sample ID: JC34340-1 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: Groundwater METHOD: 8270D | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.1 | ug/i | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 10 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.1 | ug/i | 1 | - | Ų | Yes | | 2-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.1 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 10 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.1 | ug/l | 1 | - | U | Yes | | Phenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.1 | ug/i | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.0 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.0 | ug/i | 1 | - | U | Yes | | Acetophenone | 2.0 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Atrazine | 2.0 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.1 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.0 | ug/l | 1 | - | U | Yes | | Butyl benzyl
phthalate | 2.0 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.0 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.1 | ug/l | 1 | - | U | Yes | | Carbazole | 1.0 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.0 | ug/l | 1 | - | U | Yes | | Chrysene | 1.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.0 | ug/l | 1 | (w) | U | Yes | |-----------------------------|------------|------|---|-----|---|-----| | bis(2-Chloroisopropyl)ether | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chlorophenyl phenyl ether | 2.0 | ug/l | 1 | _ | U | Yes | | 2,4-Dinitrotoluene | 1.0 | ug/l | 1 | | U | Yes | | 2,6-Dinitrotoluene | 1.0 | ug/l | 1 | | U | Yes | | 3,3'-Dichlorobenzidine | 2.0 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 1.0 | ug/l | 1 | | U | Yes | | Dibenzofuran | 5.1 | ug/l | 1 | 17 | U | Yes | | Di-n-butyl phthalate | 2.0 | ug/l | 1 | 12 | U | Yes | | Di-n-octyl phthalate | 2.0 | ug/l | 1 | 9 | U | Yes | | Diethyl phthalate | 2.0 | ug/l | 1 | 17 | U | Yes | | Dimethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.0 | ug/l | 1 | | U | Yes | | Fluoranthene | 1.0 | ug/l | 1 | | U | Yes | | Fluorene | 1.0 | ug/l | 1 | 12 | U | Yes | | Hexachlorobenzene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobutadiene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorocyclopentadiene | 10 | ug/l | 1 | - | U | Yes | | Hexachloroethane | 2.0 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Isophorone | 2.0 | ug/l | 1 | 74 | U | Yes | | 1-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Nitroaniline | 5.1 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.1 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.1 | ug/l | 1 | 12 | U | Yes | | Nitrobenzene | 2.0 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine | 2.0 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.1 | ug/l | 1 | _ | U | Yes | | Phenanthrene | 1.0 | ug/l | 1 | - | U | Yes | | Pyrene | 1.0 | ug/l | 1 | | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.0 | ug/i | 1 | 12 | U | Yes | | | | | | | | | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.051 | ug/l | 1 | 2 | U | Yes | | Benzo(a)pyrene | 0.051 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 0.10 | ug/l | 1 | | U | Yes | | Benzo(k)fluoranthene | 0.10 | ug/l | 1 | | U | Yes | | Chrysene | 0.10 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.10 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.10 | ug/l | 1 | - | υ | Yes | | Naphthalene | 0.10 | ug/l | 1 | 2- | U | Yes | | 1,4-Dioxane | 2.71 | ug/l | 1 | | - | Yes | | • | | | | | | | Sample ID: JC34340-2 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: Groundwater METHOD: 8270D | Analyte Name | Result | Units i | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|---------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.1 | ug/l | 1 | - " | U | Yes | | 4-Chloro-3-methyl phenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 10 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.1 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.1 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 10 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.0 | ug/l | 1 | - | U | Yes | | Phenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.1 | ug/l | 1 | - | UJ | Yes 🗸 | | 2,4,5-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.0 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.0 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.0 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Atrazine | 2.0 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.1 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.0 | ug/l | 1 | - 9 | U | Yes | | Benzo(g,h,i)perylene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.0 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.0 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.1 | ug/l | 1 | - | U | Yes | | Carbazole | 1.0 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.0 | ug/l | 1 | - | U | Yes | | Chrysene | 1.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroisopropyl)ether | 2.0 | ug/l | 1 | - | U | Yes | |-----------------------------|------------|-------|------------|------|-----|-------| | 4-Chlorophenyl phenyl ether | 2.0 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrotoluene | 1.0 | ug/l | 1 | | U | Yes | | 2,6-Dinitrotoluene | 1.0 | ug/l | 1 | | U | Yes | | 3,3'-Dichlorobenzidine | 2.0 | ug/l | 1 | - | Ų | Yes | | Dibenzo(a,h)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Dibenzofuran | 5.1 | ug/l | 1 | - | U | Yes | | Di-n-butyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Di-n-octyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.0 | ug/l | 1 | - | Ų | Yes | | Fluoranthene | 1.0 | ug/l | 1 | - | Ū | Yes | | Fluorene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.0 | ug/l | 1 | - " | U | Yes | | Hexachlorobutadiene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorocyclopentadiene | 10 | ug/l | 1 | - | (U) | Yes 🗸 | | Hexachloroethane | 2.0 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Isophorone | 2.0 | ug/l | 1 | 2.0 | U | Yes | | 1-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Methylnaphthalene | 1.0 | ug/l | 1 | | U | Yes | | 2-Nitroaniline | 5.1 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.1 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.1 | ug/l | 1 | | U | Yes | | Nitrobenzene | 2.0 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine | 2.0 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.1 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.0 | ug/l | - 1 | - | U | Yes | | Pyrene | 1.0 | ug/l | 1 | - | Ų | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.0 | ug/l | 1 | - | U | Yes | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.051 | ug/l | 1 | _ | υ | Yes | | Benzo(a)pyrene | 0.051 | ug/l | 1 | _ | U | Yes | | Benzo(b)fluoranthene | 0.10 | ug/l | 1 | | U | Yes | | Benzo(k)fluoranthene | 0.10 | ug/l | 1 | | Ū | Yes | | Chrysene | 0.10 | ug/l | 1 | _ | Ŭ | Yes | | Dibenzo(a,h)anthracene | 0.10 | ug/l | 1 | - | Ü | Yes | | Indeno(1,2,3-cd)pyrene | 0.10 | ug/l | 1 | _ | Ü | Yes | | Naphthalene | 0.10 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 0.10 | ug/l | 1 | | U | Yes | | I) T DIONGILL | 0.10 | 45/ I | - | 97.0 | J | 163 | Sample ID: JC34340-3 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: AQ - Field Blank Water # METHOD: 8270D | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.5 | ug/l | 1 | - | Ų | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.4 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.5 | ug/l | 1 | - | UJ | Yes | | 2,4,5-Trichlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.5 | ug/i | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/i | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.5 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - " | Ų | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.5 | ug/l | 1 | - | U | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | - | UJ | Yes | | bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | - | U | Yes | |-----------------------------|-------|------|---|-----|----|-----| | 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | _ | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.2 | ug/l | 1 | 7. | U | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | | U | Yes | | Dibenzofuran | 5.5 | ug/l | 1 | - | U | Yes | | Di-n-butyl phthalate |
2.2 | ug/l | 1 | (5) | U | Yes | | Di-n-octyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.2 | ug/l | 1 | 1.0 | U | Yes | | Dimethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.1 | ug/l | 1 | | U | Yes | | Fluorene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | - | UJ | Yes | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | - | U | Yes | | Hexachloroethane | 2.2 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | 850 | U | Yes | | Isophorone | 2.2 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | - | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | 1.5 | U | Yes | | 2-Nitroaniline | 5.5 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.5 | ug/i | 1 | - | U | Yes | | 4-Nitroaniline | 5.5 | ug/i | 1 | 3.7 | U | Yes | | Nitrobenzene | 2.2 | ug/i | 1 | 120 | U | Yes | | N-Nitroso-di-n-propylamine | 2.2 | ug/l | 1 | | U | Yes | | Nitrosodiphenylamine | 5.5 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | - | U | Yes | | Pyrene | 1.1 | ug/l | 1 | - | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.2 | ug/l | 1 | | U | Yes | | | | | | | | | | METHOD: 8270D (SIM) | | | | | | | | Benzo(a)anthracene | 0.055 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.055 | ug/l | 1 | | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Chrysene | 0.11 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | - | U | Yes | | Naphthalene | 0.11 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 0.11 | ug/l | 1 | - | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: AQ - Equipment Blank | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.2 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.2 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.1 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.2 | ug/l | 1 | 200 | U | Yes | | 2,4-Dinitrophenol | 10 | ug/i | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.2 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.1 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.1 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.2 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 10 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.2 | ug/l | 1 | - | U | Yes | | Phenol | 2.1 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.2 | ug/l | ⁵⁵ 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.2 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.2 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.0 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.0 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.1 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Atrazine | 2.1 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.2 | ug/l | 1 | - | ប | Yes | | Benzo(a)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.0 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.0 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.1 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.2 | ug/l | 1 | - | U | Yes | | Carbazole | 1.0 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.1 | ug/l | 1 | - | U | Yes | | Chrysene | 1.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.1 | ug/l | 1 | | U | Yes | |-----------------------------|--------------|------|---|------|---|-----| | bis(2-Chloroisopropyl)ether | 2.1 | ug/l | 1 | - | U | Yes | | 4-Chlorophenyl phenyl ether | 2.1 | ug/l | 1 | _ | U | Yes | | 2,4-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.1 | ug/l | 1 | | U | Yes | | Dibenzo(a,h)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Dibenzofuran | 5.2 | ug/l | 1 | | U | Yes | | Di-n-butyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Di-n-octyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Fluorene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.0 | ug/l | 1 | | U | Yes | | Hexachlorobutadiene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorocyclopentadiene | 10 | ug/l | 1 | - | U | Yes | | Hexachloroethane | 2.1 | ug/l | 1 | 350 | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Isophorone | 2.1 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.0 | ug/l | 1 | 17. | U | Yes | | 2-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Nitroaniline | 5.2 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.2 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.2 | ug/l | 1 | _ | U | Yes | | Nitrobenzene | 2.1 | ug/l | 1 | - | U | Yes | | N-Nitroso-di-n-propylamine | 2.1 | ug/l | 1 | 5.70 | U | Yes | | Nitrosodiphenylamine | 5.2 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.0 | ug/l | 1 | | U | Yes | | Pyrene | 1.0 | ug/l | 1 | 17.7 | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.1 | ug/l | 1 | - | U | Yes | | | | | | | | | | | : 8270D (SIN | • | | | | | | Benzo(a)anthracene | 0.052 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.052 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 0.10 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.10 | ug/l | 1 | - | U | Yes | | Chrysene | 0.10 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.10 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.10 | ug/l | 1 | | U | Yes | | Naphthalene | 0.10 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 0.10 | ug/l | 1 | - | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.0 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.0 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.0 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 10 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.0 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.0 | ug/l | 1 | - | Ų | Yes | | 3&4-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.0 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 10 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.0 | ug/l | 1 | - | UJ | Yes 🗸 | | Phenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.0 | ug/l | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.0 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.0 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.0 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.0 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.0 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | - | บ | Yes | | Atrazine | 2.0 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.0 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.0 | ug/l | 1 | - | Ų | Yes | | Benzo(b)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.0 | ug/l | 1 | - | IJ | Yes | | Benzo(k)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.0 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.0 | ug/l | 1 | - | UJ | Yes | | 1,1'-Biphenyl | 1.0 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.0 | ug/l | 1 | - | U | Yes | | Carbazole | 1.0 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.0 | ug/l | 1 | - | U | Yes | | Chrysene | 1.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.0 | ug/l | 1 | - | U | Yes | | bis (2-Chloroethyl) ether | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroisopropyl)ether | 2.0 | ug/l | 1 | - | U | Yes | |-----------------------------|--------------|------|---|------|---|-------| | 4-Chlorophenyl phenyl ether | 2.0 | ug/l | 1 | - | Ų | Yes | | 2,4-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.0 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 105 | ug/l | 2 | - | | Yes 🗸 | | Dibenzo(a,h)anthracene | 1.0 | ug/l | 1 | - | Ų | Yes | | Dibenzofuran | 5.0 | ug/l | 1 | - | U | Yes | | Di-n-butyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Di-n-octyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Fluoranthene | 0.54 | ug/l | 1 | J | J | Yes | | Fluorene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobutadiene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | 12.1 | U | Yes | | Hexachloroethane | 2.0 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.0 | ug/l | 1 | | U | Yes | | Isophorone | 2.0 | ug/l | 1 | 2.0 | U | Yes | | 1-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Nitroaniline | 5.0 | ug/l | 1 | | U | Yes | | 3-Nitroaniline | 5.0 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.0 | ug/l | 1 | | U | Yes | | Nitrobenzene | 2.0 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine
 2.0 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.0 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.0 | ug/l | 1 | - | U | Yes | | Pyrene | 1.0 | ug/l | 1 | 3-3 | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.0 | ug/l | 1 | - | U | Yes | | | | | | | | | | | : 8270D (SIN | • | | | | | | Benzo(a)anthracene | 0.050 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.050 | ug/l | 1 | • | บ | Yes | | Benzo(b)fluoranthene | 0.10 | ug/i | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.10 | ug/l | 1 | - | U | Yes | | Chrysene | 0.10 | ug/l | 1 | | U | Yes | | Dibenzo(a,h)anthracene | 0.10 | ug/l | 1 | | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.10 | ug/l | 1 | - | U | Yes | | Naphthalene | 0.10 | ug/l | 1 | - | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.5 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.4 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/i | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.5 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | _ | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 1.5 | ug/l | 1 | J | J | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/i | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | - | U | Yes | | 2.2
2.2 | ug/l | 1 | | U | Yes | |------------|--|---|--|--|------| | 2.2 | | | | | | | 2.2 | ug/l | 1 | 720 | U | Yes | | 1.1 | ug/l | 1 | | U | Yes | | 1.1 | ug/l | 1 | | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 220 | ug/l | 5 | - | | Yes√ | | 1.1 | ug/l | 1 | 37.0 | U | Yes | | 5.5 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | | U | Yes | | 3.8 | ug/l | 1 | - | - | Yes | | 0.50 | ug/l | 1 | J | J | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | UJ | Yes | | 11 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 1.0 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 5.5 | ug/l | 1 | | U | Yes | | 5.5 | ug/l | 1 | - | U | Yes | | 5.5 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | 2 | U | Yes | | 5.5 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 1.1 | ug/l | 1 | - | U | Yes | | 2.2 | ug/l | 1 | - | Ų | Yes | | | | | | | | | • | 1) | | | | | | | _ | | - | | Yes | | | ·=' | | - | | Yes | | 0.11 | _ | 1 | - | | Yes | | 0.11 | ug/l | 1 | - | Ų | Yes | | 0.11 | ug/l | 1 | - | U | Yes | | 0.11 | ug/l | 1 | - 1 | U | Yes | | 0.11 | ug/l | 1 | | U | Yes | | 0.11 | ug/l | 1 | • | U | Yes | | | 1.1 1.1 2.2 220 1.1 5.5 2.2 2.2 2.2 2.2 3.8 0.50 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 2.2 1.0 2.2 1.1 1.1 5.5 5.5 5.5 5.5 5.5 2.2 2.2 2.2 5.5 1.1 1.1 2.2 : 8270D (SIN 0.055 0.055 0.011 0.11 0.11 0.11 0.11 0. | 1.1 ug/l 2.2 3.8 ug/l 0.50 ug/l 1.1 ug/l 1.1 ug/l 1.1 ug/l 1.1 ug/l 1.1 ug/l 1.1 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 1.0 ug/l 2.1 ug/l 1.1 ug/l 5.5 ug/l 5.5 ug/l 5.5 ug/l 5.5 ug/l 5.5 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 3.8 ug/l 6.11 | 1.1 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.20 ug/l 5 1.1 ug/l 1 5.5 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 3.8 ug/l 1 0.50 ug/l 1 1.1 5.5 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 3.8 ug/l 1 0.50 ug/l 1 1.1 2.2 ug/l 1 2.2 ug/l 1 3.5 ug/l 1 3.5 ug/l 1 3.5 ug/l 1 3.5 ug/l 1 3.6 ug/l 1 3.7 ug/l 1 3.8 ug/l 1 3.9 ug/l 1 3.9 ug/l 1 3.1 | 1.1 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 5.5 ug/l 1 2.2 ug/l 1 3.8 ug/l 1 0.50 ug/l 1 1.1 5.5 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 3.8 ug/l 1 3.8 ug/l 1 3.8 ug/l 1 5.5 2.2 ug/l 1 2.2
ug/l 1 2.2 ug/l 1 3.8 ug/l 1 5.5 | 1.1 | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.3 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.3 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.1 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.3 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.3 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.1 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.1 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.3 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.3 | ug/l | 1 | - | U | Yes | | Phenol | 2.1 | ug/i | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.3 | ug/l | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.3 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.3 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.1 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.1 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.3 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | ** | U | Yes | | Butyl benzyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.1 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.3 | ug/l | 1 | - | U | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.1 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.1 | ug/l | 1 | - | U | Yes | |--------------------------------|------------|------|---|------|-----------|-------| | bis (2-Chlorois opropyl) ether | 2.1 | ug/l | 1 | 4 | U | Yes | | 4-Chlorophenyl phenyl ether | 2.1 | ug/l | 1 | (4) | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.1 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 19.3 | ug/l | 1 | 17.0 | - | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | 141 | U | Yes | | Dibenzofuran | 5.3 | ug/l | 1 | | U | Yes | | Di-n-butyl phthalate | 2.1 | ug/l | 1 | 170 | U | Yes | | Di-n-octyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.1 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.1 | ug/l | 1 | | U | Yes | | Fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Fluorene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | 9 | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | | UJ | Yes 🗸 | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | - | U | Yes | | Hexachloroethane | 2.1 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Isophorone | 2.1 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | 3.00 | U | Yes | | 2-Nitroaniline | 5.3 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.3 | ug/l | 1 | - | บ | Yes | | 4-Nitroaniline | 5.3 | ug/l | 1 | 0.70 | U | Yes | | Nitrobenzene | 2.1 | ug/l | 1 | - | U | Yes | | N-Nitroso-di-n-propylamine | 2.1 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.3 | ug/l | 1 | | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | 4 | U | Yes | | Pyrene | 1.1 | ug/l | 1 | - | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.1 | ug/l | 1 | - | U | Yes | | | | | | | | | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.053 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.053 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Chrysene | 0.11 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | - | U | Yes | | Naphthalene | 0.11 | ug/l | 1 | - | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.1 | ug/l | 1 | - | Ų | Yes | | 4-Chloro-3-methyl phenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 10 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.1 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.0 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.1 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 10 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.0 | ug/l | 1 | - | U | Yes | | Phenol | 2.0 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.1 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.0 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.0 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.0 | ug/l | 1 | - | U | Yes | | Anthracene | 1.0 | ug/l | 1 | • | U | Yes | | Atrazine | 2.0 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.1 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.0 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.0 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.0 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.1 | ug/l | 1 | - | U | Yes | | Carbazole | 1.0 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.0 | ug/l | 1 | - | U | Yes | | Chrysene | 1.0 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.0 | ug/l | 1 | - | U | Yes | | | | | | | | | | bis(2-Chloroethyl)ether | 2.0 | ug/l | 1 | - | U | Yes | |-----------------------------|------------|------|---|-------------|----|------| | bis(2-Chloroisopropyl)ether | 2.0 | ug/l | 1 | - | U | Yes | | 4-Chlorophenyl phenyl ether | 2.0 | ug/l | 1 | 94 | U | Yes | | 2,4-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.0 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.0 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 27.6 | ug/l | 1 | | ** | Yes | | Dibenzo(a,h)anthracene | 1.0 | ug/l | 1 | - | U | Yes | | Dibenzofuran | 5.1 | ug/l | 1 | | U | Yes | | Di-n-butyl phthalate | 2.0 | ug/l | 1 | - | Ų | Yes | | Di-n-octyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.0 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.0 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.0 | ug/l | 1 | - | U | Yes | | Fluorene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.0 | ug/l | 1 | - | U | Yes | | Hexachlorobutadiene | 1.0 | ug/l | 1 | - | UJ | Yes√ | | Hexachlorocyclopentadiene | 10 | ug/l | 1 | 7.7 | U | Yes | | Hexachloroethane | 2.0 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.0 | ug/l | 1 | - | U | Yes | | Isophorone | 2.0 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Methylnaphthalene | 1.0 | ug/l | 1 | - | U | Yes | | 2-Nitroaniline | 5.1 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.1 | ug/l | 1 | 32 | U | Yes | | 4-Nitroaniline | 5.1 | ug/l | 1 | | U | Yes | | Nitrobenzene | 2.0 | ug/l | 1 | - | U | Yes | | N-Nitroso-di-n-propylamine | 2.0 | ug/l | 1 | 12 | U | Yes | | Nitrosodiphenylamine | 5.1 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.0 | ug/l | 1 | - | U | Yes | | Pyrene | 1.0 | ug/l | 1 | | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.0 | ug/l | 1 | - | U | Yes | | | | | | | | | | | 8270D (SIM | • | | | | | | Benzo(a)anthracene | 0.051 | ug/l | 1 | 173 | U | Yes | | Benzo(a)pyrene | 0.051 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 0.10 | ug/l | 1 |)* <u>.</u> | U | Yes | | Benzo(k)fluoranthene | 0.10 | ug/l | 1 | 177 | U | Yes | | Chrysene | 0.10 | ug/l | 1 | 12. | U | Yes | | Dibenzo(a,h)anthracene | 0.10 | ug/l | 1 | 17 | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.10 | ug/l | 1 | - | U | Yes | | Naphthalene | 0.10 | ug/l | 1 | 14 | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units I | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|---------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.5 | ug/l | 1 | - | Ų | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.5 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.5 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.4 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.5 | ug/l | 1 | - | U |
Yes | | 2,4,5-Trichlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.5 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.5 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.5 | ug/l | 1 | - | U | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | | | | | | | | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | | U | Yes | |-----------------------------|------------|------|---|-----|-----|-------| | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | 3-3 | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | _ | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | | U | Yes | | 3,3'-Dichlorobenzidine | 2.2 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Dibenzofuran | 5.5 | ug/l | 1 | - | U | Yes | | Di-n-butyl phthalate | 2.2 | ug/l | 1 | | U | Yes | | Di-n-octyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Fluorene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | 2 | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | - | UJ | Yes 🗸 | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | - | U | Yes | | Hexachloroethane | 2.2 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | - | o U | Yes | | Isophorone | 2.2 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | (*) | U | Yes | | 2-Nitroaniline | 5.5 | ug/l | 1 | | U | Yes | | 3-Nitroaniline | 5.5 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.5 | ug/l | 1 | - 1 | U | Yes | | Nitrobenzene | 2.2 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine | 2.2 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.5 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | - | U | Yes | | Pyrene | 1.1 | ug/l | 1 | - | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.2 | ug/l | 1 | • | U | Yes | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.055 | ug/l | 1 | - 7 | U | Yes | | Benzo(a)pyrene | 0.055 | ug/l | 1 | 12 | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/i | 1 | | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | | U | Yes | | Chrysene | 0.11 | ug/l | 1 | 12 | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | · · | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | | U | Yes | | Naphthalene | 0.11 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 0.311 | ug/l | 1 | ie. | - | Yes | | | | _ | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: AQ - Field Blank Water | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|------------------------|----------|------------|------------| | 2-Chlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.4 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.4 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.3 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4,5-Trichlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.4 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/i | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.4 | ug/l | 1 | | U | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | - | U | Yes | |-----------------------------|------------|--------|-----|----|----|-------| | 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.2 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | 12 | U | Yes | | Dibenzofuran | 5.4 | ug/l | 1 | | U | Yes | | Di-n-butyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Di-n-octyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 1.9 | ug/l | 1 | J | J | Yes | | Fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Fluorene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | | UJ | Yes 🗸 | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | | U | Yes | | Hexachloroethane | 2.2 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Isophorone | 2.2 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Nitroaniline | 5.4 | ug/i | 1 | 2 | U | Yes | | 3-Nitroaniline | 5.4 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.4 | ug/l | 1 | - | U | Yes | | Nitrobenzene | 2.2 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine | 2.2 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.4 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | - | U | Yes | | Pyrene | 1.1 | ug/l | 1 | | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.2 | ug/l | 1 | | U | Yes | | • • • | | O, | | | | | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.054 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.054 | ug/l | 1 2 | | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/l | 1 | | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Chrysene | 0.11 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | - | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | 1 | U | Yes | | Naphthalene | 0.11 | ug/l | 1 | | U | Yes | | 1,4-Dioxane | 0.11 | ug/l | 1 | | Ü | Yes | | • | | ٠ بپ - | _ | | - | | Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: AQ- Equipment Blank | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.6 | ug/l | 1 | - | Ų | Yes | | 4-Chloro-3-methyl phenol | 5.6 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.6 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.6 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 2-Nitrophenol | 5.6 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.4 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.6 | ug/l | 1 | - | UJ | Yes | | 2,4,5-Trichlorophenol | 5.6 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.6 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.6 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.6 | ug/l | 1 | - | U | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U
| Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | | | | | | | | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | - | U | Yes | |-----------------------------|------------|------|---|--------------|----|-------| | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | _ | U | Yes | | 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 3,3'-Dichlorobenzidine | 2.2 | ug/l | 1 | | U | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Dibenzofuran | 5.6 | ug/l | 1 | - | U | Yes | | Di-n-butyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Di-n-octyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Fluorene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | (2) | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | - | UJ | Yes 🗸 | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | | U | Yes | | Hexachloroethane | 2.2 | ug/l | 1 | 9 <u>4</u> 3 | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Isophorone | 2.2 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | - | U | Yes | | 2-Nitroaniline | 5.6 | ug/l | 1 | - | U | Yes | | 3-Nitroaniline | 5.6 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.6 | ug/l | 1 | | U | Yes | | Nitrobenzene | 2.2 | ug/l | 1 | | U | Yes | | N-Nitroso-di-n-propylamine | 2.2 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.6 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | - | U | Yes | | Pyrene | 1.1 | ug/l | 1 | | U | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.2 | ug/l | 1 | • | U | Yes | | METHOD: | 8270D (SIM | 1) | | | | | | Benzo(a)anthracene | 0.056 | ug/l | 1 | | U | Yes | | Benzo(a)pyrene | 0.056 | ug/l | 1 | _ | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | | U | Yes | | Chrysene | 0.11 | ug/l | 1 | - | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | 3-1 | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | - | U | Yes | | Naphthalene | 0.11 | ug/l | 1 | - | U | Yes | | 1,4-Dioxane | 0.11 | ug/l | 1 | • | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |----------------------------|--------|-------|-----------------|----------|------------|------------| | 2-Chlorophenol | 5.4 | ug/i | 1 | - | U | Yes | | 4-Chloro-3-methyl phenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4-Dichlorophenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dimethylphenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrophenol | 11 | ug/l | 1 | - | U | Yes | | 4,6-Dinitro-o-cresol | 5.4 | ug/l | 1 | - | U | Yes | | 2-Methylphenol | 2.2 | ug/l | 1 | - | U | Yes | | 3&4-Methylphenoi | 2.2 | ug/l | 1 | - " | U | Yes | | 2-Nitrophenol | 5.4 | ug/l | 1 | - | U | Yes | | 4-Nitrophenol | 11 | ug/l | 1 | - | U | Yes | | Pentachlorophenol | 4.3 | ug/l | 1 | - | U | Yes | | Phenol | 2.2 | ug/l | 1 | - | U | Yes | | 2,3,4,6-Tetrachlorophenol | 5.4 | ug/l | 1 | - | UJ | Yes 🗸 | | 2,4,5.4-Trichlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | 2,4,6-Trichlorophenol | 5.4 | ug/l | 1 | - | U | Yes | | Acenaphthene | 1.1 | ug/l | 1 | - | U | Yes | | Acenaphthylene | 1.1 | ug/l | 1 | - | U | Yes | | Acetophenone | 2.2 | ug/l | 1 | - | U | Yes | | Anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Atrazine | 2.2 | ug/l | 1 | - | U | Yes | | Benzaldehyde | 5.4 | ug/l | 1 | - | U | Yes | | Benzo(a)anthracene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(g,h,i)perylene | 1.1 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | 4-Bromophenyl phenyl ether | 1.1 | ug/l | 1 | - | U | Yes | | Butyl benzyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | 1,1'-Biphenyl | 1.1 | ug/l | 1 | - | U | Yes | | 2-Chloronaphthalene | 2.2 | ug/l | 1 | - | U | Yes | | 4-Chloroaniline | 5.4 | ug/l | 1 | - | Ų | Yes | | Carbazole | 1.1 | ug/l | 1 | - | U | Yes | | Caprolactam | 2.2 | ug/l | 1 | - | U | Yes | | Chrysene | 1.1 | ug/l | 1 | - | U | Yes | | bis(2-Chloroethoxy)methane | 2.2 | ug/l | 1 | - | U | Yes | | | | | | | | | | bis(2-Chloroethyl)ether | 2.2 | ug/l | 1 | 140 | UJ | Yes | |-----------------------------|------------|------|----|------|----|-----| | bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | 35.3 | U | Yes | | 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | - | U | Yes | | 2,4-Dinitrotoluene | 1.1 | ug/l | 1 | - | U | Yes | | 2,6-Dinitrotoluene | 1.1 | ug/l | 1 | 27.0 | U | Yes | | 3,3'-Dichlorobenzidine | 2.2 | ug/l | 1 | 2 | U | Yes | | 1,4-Dioxane | 1520 | ug/l | 50 | | - | Yes | | Dibenzo(a,h)anthracene | 1.1 | ug/l | 1 | | U | Yes | | Dibenzofuran | 5.4 | ug/i | 1 | - | U | Yes | | Di-n-butyl phthalate | 2.2 | ug/l | 1 | 78.7 | U | Yes | | Di-n-octyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Diethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Dimethyl phthalate | 2.2 | ug/l | 1 | - | U | Yes | | bis(2-Ethylhexyl)phthalate | 2.2 | ug/l | 1 | - | U | Yes | | Fluoranthene | 1.1 | ug/l | 1 | - | U | Yes | | Fluorene | 1.1 | ug/l | 1 | | U | Yes | | Hexachlorobenzene | 1.1 | ug/l | 1 | - | U | Yes | | Hexachlorobutadiene | 1.1 | ug/l | 1 | _ | UJ | Yes | | Hexachlorocyclopentadiene | 11 | ug/l | 1 | | U | Yes | | Hexachloroethane | 2.2 | ug/l | 1 | | U | Yes | | Indeno(1,2,3-cd)pyrene | 1.1 | ug/l | 1 | _ | Ų | Yes | | Isophorone | 2.2 | ug/l | 1 | - | U | Yes | | 1-Methylnaphthalene | 1.1 | ug/l | 1 | 2.7 | U | Yes | | 2-Methylnaphthalene | 1.1 | ug/l | 1 | | U | Yes | | 2-Nitroaniline | 5.4 | ug/l | 1 | | U | Yes | | 3-Nitroaniline | 5.4 | ug/l | 1 | - | U | Yes | | 4-Nitroaniline | 5.4 | ug/l | 1 | - | U | Yes | | Nitrobenzene | 2.2 | ug/l | 1 | - | U | Yes | | N-Nitroso-di-n-propylamine | 2.2 | ug/l | 1 | - | U | Yes | | Nitrosodiphenylamine | 5.4 | ug/l | 1 | - | U | Yes | | Phenanthrene | 1.1 | ug/l | 1 | 17.0 | U | Yes | | Pyrene | 1.1 | ug/l | 1 | - | υ | Yes | | 1,2,4,5-Tetrachlorobenzene | 2.2 | ug/l | 1 | - | Ų | Yes | | | | | | | | | | METHOD: | 8270D (SIN | 1) | | | | | | Benzo(a)anthracene | 0.054 | ug/l | 1 | - | U | Yes | | Benzo(a)pyrene | 0.054 | ug/l | 1 | - | U | Yes | | Benzo(b)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Benzo(k)fluoranthene | 0.11 | ug/l | 1 | - | U | Yes | | Chrysene | 0.11 | ug/l | 1 | | U | Yes | | Dibenzo(a,h)anthracene | 0.11 | ug/l | 1 | | U | Yes | | Indeno(1,2,3-cd)pyrene | 0.11 | ug/l | 1 | - | Ų | Yes | | Naphthalene | 0.236 | ug/l | 1 | 2 | - | Yes | | • | | - | | | | | Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater | Amalista Nama | | l lada | Dilution Footon | 1-6-51 | \{-1:-1-4: | 0 | |-----------------------------|--------|--------|-----------------|----------|------------|-----| | Analyte Name | Result | | Dilution Factor | Lab Flag | validation | • | | 2-Chlorophenol | 31.3 | ug/l | 1 | - | - | Yes | | 4-Chloro-3-methyl phenol | 37.7 | ug/l | 1 | - | - | Yes | | 2,4-Dichlorophenol | 41.8 | ug/l | 1 | - | • | Yes | | 2,4-Dimethylphenol | 40.7 | ug/l | 1 | - | - | Yes | | 2,4-Dinitrophenol | 102 | ug/l | 1 | - | - | Yes | | 4,6-Dinitro-o-cresol | 49.0 | ug/l | 1 | - | - | Yes | | 2-Methylphenol | 30.0 | ug/l | 1 | - | - | Yes | | 3&4-Methylphenol | 29.0 | ug/l | 1 | - | - | Yes | | 2-Nitrophenol | 36.2 | ug/l | 1 | - | - | Yes | | 4-Nitrophenol | 34.0 | ug/l | 1 | - | - | Yes | | Pentachlorophenol | 54.7 | ug/l | 1 | - | - | Yes | | Phenol | 18.2 | ug/i | 1 | - | - | Yes | | 2,3,4,6-Tetrachlorophenol | 47.0 | ug/i | 1 | - | - | Yes | | 2,4,5-Trichlorophenol | 44.3 | ug/l | 1 | - | - | Yes | | 2,4,6-Trichlorophenol | 45.4 | ug/l | 1 | - | - | Yes | | Acenaphthene | 40.0 | ug/l | 1 | - | - | Yes | | Acenaphthylene | 36.5 | ug/l | 1 | - | - | Yes | | Acetophenone | 37.2 | ug/l | 1 | - | - | Yes | | Anthracene | 41.8 | ug/l | 1 | - | - | Yes | | Atrazine | 52.6 | ug/l | 1 | - | - | Yes | | Benzaldehyde | 30.0 | ug/l | 1 | - | - | Yes | | Benzo(a)anthracene | 42.8 | ug/l | 1 | - | - | Yes | | Benzo(a)pyrene | 41.4 | ug/l | 1 | - | - | Yes | | Benzo(b)fluoranthene | 43.5 | ug/l | 1 | - E | - | Yes | | Benzo(g,h,i)perylene | 35.3 | ug/l | 1 | - | - | Yes | | Benzo(k)fluoranthene | 42.2 | ug/l | 1 | - | - | Yes | | 4-Bromophenyl phenyl ether | 43.9 | ug/l | 1 | - | - | Yes | | Butyl benzyl phthalate | 35.2 | ug/l | 1 🚽 | - | - | Yes | | 1,1'-Biphenyl | 37.4 | ug/l | 1 | - | - | Yes | | 2-Chloronaphthalene | 37.9 | ug/l | 1 | - | - | Yes | | 4-Chloroaniline | 22.2 | ug/l | 1 | - | - | Yes | | Carbazole | 39.4 | ug/l | 1 | - | - | Yes | | Caprolactam | 10.9 | ug/l | 1 | | - | Yes | | Chrysene | 39.8 | ug/l | 1 | - | - | Yes | | bis(2-Chloroethoxy)methane | 33.1 | ug/l | 1 | - | - | Yes | | bis(2-Chloroethyl)ether | 32.6 | ug/l | 1 | - | _ | Yes | | bis(2-Chloroisopropyl)ether | 31.4 | ug/l | 1 | - | - | Yes | | | | | | | | | | 4-Chlorophenyl phenyl ether | 45.6 | ug/l | 1 | | 343 | Yes | |-----------------------------|------------|------|---|-----|------|-----| | 2,4-Dinitrotoluene | 47.3 | ug/l | 1 | | - | Yes | | 2,6-Dinitrotoluene | 44.9 | ug/l | 1 | 2 | 2 | Yes | | 3,3'-Dichlorobenzidine | 36.7 | ug/l | 1 | - | _ | Yes | | 1.4-Dioxane | 1580 | ug/l | 1 | | | Yes | | Dibenzo(a,h)anthracene | 37.2 | ug/l | 1 | _ | 2 | Yes | | Dibenzofuran | 39.7 | ug/l | 1 | - | - | Yes | | Di-n-butyl phthalate | 39.4 | ug/l | 1 | - | C7.0 | Yes | | Di-n-octyl phthalate | 36.8 | ug/l | 1 | | | Yes | | Diethyl phthalate | 40.9 | ug/l | 1 | | | Yes | | Dimethyl phthalate | 41.0 | ug/l | 1 | 7.5 | - | Yes | |
bis(2-Ethylhexyl)phthalate | 34.0 | ug/l | 1 | - | - | Yes | | Fluoranthene | 45.8 | ug/l | 1 | | - | Yes | | Fluorene | 43.6 | ug/l | 1 | | | Yes | | Hexachlorobenzene | 44.1 | ug/l | 1 | | - | Yes | | Hexachlorobutadiene | 37.5 | ug/l | 1 | | - | Yes | | Hexachlorocyclopentadiene | 64.3 | ug/l | 1 | _ | - | Yes | | Hexachloroethane | 33.8 | ug/l | 1 | | | Yes | | Indeno(1,2,3-cd)pyrene | 39.8 | ug/l | 1 | | | Yes | | Isophorone | 34.9 | ug/l | 1 | - | - | Yes | | 1-Methylnaphthalene | 36.1 | ug/l | 1 | - | - | Yes | | 2-Methylnaphthalene | 37.4 | ug/l | 1 | - | | Yes | | 2-Nitroaniline | 39.9 | ug/l | 1 | - | | Yes | | 3-Nitroaniline | 24.4 | ug/l | 1 | - | - | Yes | | 4-Nitroaniline | 37.1 | ug/l | 1 | - | - | Yes | | Nitrobenzene | 34.9 | ug/l | 1 | _ | - | Yes | | N-Nitroso-di-n-propylamine | 34.3 | ug/l | 1 | - | - | Yes | | Nitrosodiphenylamine | 39.7 | ug/l | 1 | - | - | Yes | | Phenanthrene | 41.8 | ug/l | 1 | _ | - | Yes | | Pyrene | 39.8 | ug/l | 1 | - | - | Yes | | 1,2,4,5-Tetrachlorobenzene | 48.5 | ug/l | 1 | | - | Yes | | | | _ | | | | | | METHOD: | 8270D (SIM | 1) | | | | | | Benzo(a)anthracene | 0.773 | ug/l | 1 | 750 | .7 | Yes | | Benzo(a)pyrene | 0.675 | ug/l | 1 | - | 72 | Yes | | Benzo(b)fluoranthene | 0.756 | ug/l | 1 | - | | Yes | | Benzo(k)fluoranthene | 0.712 | ug/l | 1 | - | - | Yes | | Chrysene | 0.740 | ug/l | 1 | - | - | Yes | | Dibenzo(a,h)anthracene | 0.557 | ug/l | 1 | • | • | Yes | | Indeno(1,2,3-cd)pyrene | 0.515 | ug/l | 1 | - | - | Yes | | Naphthalene | 0.875 | ug/l | 1 | 940 | 7.4 | Yes | | 1,4-Dioxane | 1240 | ug/l | 1 | EB | EB | Yes | | | | | | | | | Sample ID: JC34340-16MSD Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater | METHOD. | 02/00 | | | | | | |-----------------------------|--------|-------|------------------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | 2-Chlorophenol | 30.9 | ug/l | 1 | - | - | Yes | | 4-Chloro-3-methyl phenol | 36.5 | ug/l | 1 | - | - | Yes | | 2,4-Dichlorophenol | 40.5 | ug/l | 1 | - | - | Yes | | 2,4-Dimethylphenol | 39.4 | ug/l | 1 | - | - | Yes | | 2,4-Dinitropheno! | 98.6 | ug/l | 1 | - | - | Yes | | 4,6-Dinitro-o-cresol | 45.7 | ug/l | 1 | - | - | Yes | | 2-Methylphenol | 30.5 | ug/l | 1 | - | - | Yes | | 3&4-Methylphenol | 28.3 | ug/l | 1 | - | - | Yes | | 2-Nitrophenol | 35.4 | ug/l | 1 | - | - | Yes | | 4-Nitrophenol | 33.6 | ug/l | 1 | - | - | Yes | | Pentachlorophenol | 50.7 | ug/l | 1 | - | - | Yes | | Phenol | 17.9 | ug/l | 1 | - | - | Yes | | 2,3,4,6-Tetrachlorophenol | 45.7 | ug/l | 1 | - | - | Yes | | 2,4,5-Trichlorophenol | 43.1 | ug/l | 1 | - | - | Yes | | 2,4,6-Trichlorophenol | 43.7 | ug/l | 1 | - | - | Yes | | Acenaphthene | 37.8 | ug/l | 1 | - | - | Yes | | Acenaphthylene | 34.3 | ug/l | 1 | - | - | Yes | | Acetophenone | 35.8 | ug/l | 1 | - | - | Yes | | Anthracene | 39.0 | ug/l | 1 | - | - | Yes | | Atrazine | 49.5 | ug/l | 1 | - | - | Yes | | Benzaldehyde | 29.4 | ug/l | 1 | - | - | Yes | | Benzo(a)anthracene | 40.2 | ug/l | 1 | - | - | Yes | | Benzo(a)pyrene | 39.6 | ug/l | 1 | - | - | Yes | | Benzo(b)fluoranthene | 41.7 | ug/l | 1 | - | - | Yes | | Benzo(g,h,i)perylene | 33.4 | ug/l | 1 | - | - | Yes | | Benzo(k)fluoranthene | 39.4 | ug/l | 1 | - | - | Yes | | 4-Bromophenyl phenyl ether | 40.3 | ug/l | 1 | - | - | Yes | | Butyl benzyl phthalate | 33.2 | ug/l | 1 | - | - | Yes | | 1,1'-Biphenyl | 35.3 | ug/l | 1 | - | • | Yes | | 2-Chloronaphthalene | 35.7 | ug/l | 1 | - | - | Yes | | 4-Chloroaniline | 20.5 | ug/l | 1 | - | - | Yes | | Carbazole | 37.3 | ug/l | 1 | - | - | Yes | | Caprolactam | 11.1 | ug/l | 1 | - | - | Yes | | Chrysene | 37.7 | ug/l | 1 | - | - | Yes | | bis(2-Chloroethoxy)methane | 31.0 | ug/l | 1 | - | - | Yes | | bis(2-Chloroethyl)ether | 33.7 | ug/l | 1 | - | - | Yes | | bis(2-Chloroisopropyl)ether | 31.2 | ug/l | 1 | - | - | Yes | | 4-Chlorophenyl phenyl ether | 43.0 | ug/l | 1 | - | | Yes | |-----------------------------|------------|------|---|------|---------------|-----| | 2,4-Dinitrotoluene | 46.4 | ug/l | 1 | | 1.0 | Yes | | 2,6-Dinitrotoluene | 42.7 | ug/l | 1 | - | ~ | Yes | | 3,3'-Dichlorobenzidine | 27.1 | ug/l | 1 | - | - | Yes | | 1,4-Dioxane | 1800 | ug/l | 1 | - | - | Yes | | Dibenzo(a,h)anthracene | 34.8 | ug/l | 1 | | ¥. | Yes | | Dibenzofuran | 38.5 | ug/l | 1 | - | - | Yes | | Di-n-butyl phthalate | 37.4 | ug/l | 1 | 7.0 | 375 | Yes | | Di-n-octyl phthalate | 34.7 | ug/l | 1 | - | - | Yes | | Diethyl phthalate | 39.5 | ug/l | 1 | - | . | Yes | | Dimethyl phthalate | 40.0 | ug/l | 1 | - | | Yes | | bis(2-Ethylhexyl)phthalate | 32.1 | ug/l | 1 | - | - | Yes | | Fluoranthene | 42.8 | ug/l | 1 | - | - | Yes | | Fluorene | 41.6 | ug/l | 1 | - | - | Yes | | Hexachlorobenzene | 40.6 | ug/l | 1 | - | - | Yes | | Hexachlorobutadiene | 36.9 | ug/l | 1 | - | - | Yes | | Hexachlorocyclopentadiene | 63.4 | ug/l | 1 | - | - | Yes | | Hexachloroethane | 35.0 | ug/l | 1 | - | - | Yes | | Indeno(1,2,3-cd)pyrene | 37.3 | ug/l | 1 | - | 1- | Yes | | Isophorone | 33.3 | ug/l | 1 | - | | Yes | | 1-Methylnaphthalene | 34.2 | ug/l | 1 | - | - | Yes | | 2-Methylnaphthalene | 35.1 | ug/l | 1 | - | | Yes | | 2-Nitroaniline | 40.0 | ug/l | 1 | - | 1 | Yes | | 3-Nitroaniline | 26.5 | ug/l | 1 | - | | Yes | | 4-Nitroaniline | 34.3 | ug/l | 1 | - | | Yes | | Nitrobenzene | 33.0 | ug/l | 1 | _ | 4 | Yes | | N-Nitroso-di-n-propylamine | 33.2 | ug/l | 1 | - | - | Yes | | Nitrosodiphenylamine | 36.7 | ug/l | 1 | 17.0 | 9- | Yes | | Phenanthrene | 39.4 | ug/l | 1 | - | 72 | Yes | | Pyrene | 37.9 | ug/l | 1 | | | Yes | | 1,2,4,5-Tetrachlorobenzene | 45.2 | ug/l | 1 | 27.1 | 77 | Yes | | * AFTHOD | 02700 (61) | • \ | | | | | | | 8270D (SIN | | 4 | | | V | | Benzo(a)anthracene | 0.591 | ug/l | 1 | • | • | Yes | | Benzo(a)pyrene | 0.420 | ug/l | 1 | - | - | Yes | | Benzo(b)fluoranthene | 0.549 | ug/l | 1 | | | Yes | | Benzo(k)fluoranthene | 0.481 | ug/l | 1 | - | - | Yes | | Chrysene | 0.576 | ug/l | 1 | - | - | Yes | | Dibenzo(a,h)anthracene | 0.352 | ug/l | 1 | - | - | Yes | | Indeno(1,2,3-cd)pyrene | 0.314 | ug/l | 1 | - | • | Yes | | Naphthalene | 0.730 | ug/l | 1 | - | | Yes | | 1,4-Dioxane | 1450 | ug/l | 1 | - | -7 | Yes | | | Date:December_20-22,_2016
Shipping Date:December_22,_2016
EPA Region:2 | |--|--| | REVIEW OF SEMIVOLA | TILE ORGANIC PACKAGE | | validation actions. This document will assist make more informed decision and in better so results were assessed according to USEP following order of precedence: EPA Hazarde 2015 – Revision 0. Semivolatile Data Validation. | ile organics were created to delineate required the reviewer in using professional judgment to erving the needs of the data users. The sample A data validation guidance documents in the ous Waste Support Section, SOP HW-35A, July The QC criteria and data validation actions listed primary guidance document, unless otherwise | | The hardcopied (laboratory name) _Accutest reviewed and the quality control and performan included: | data package received has been ce data summarized. The data review for SVOCs | | Lab. Project/SDG No.:JC34340_ No. of Samples:14_SIM/14_SCAN Trip blank No.: | 340-12
340-15 | | X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate | X Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits | | | alyzed_by_method_SW846-8270D;_Selected_PAHs
8270D_(SIM) | | Definition of Qualifiers: | | | J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect | | | Reviewer: | <u></u> | | Date: January 27, 2017 | | # DATA COMPLETENESS | MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED | |---------------------|---------------------|---------------| | _ | | | | | | | | | | | | <u> </u> | | | | - | - | | | <u> </u> | | | | | | | | | | | | | | | | | | | | - | | | | -1 | | | | <u> </u> | 110-1 | | | | | | | <u> </u> | | . 10 | | All criteria were met _ | _X_ | _ | |-------------------------|-----|---| | Criteria were not met | | | | and/or see below | | | # **HOLDING TIMES** The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis. Complete table for all samples and note the analysis and/or preservation not within criteria | SAMPLE ID | DATE | DATE | рН | ACTION | | | |---|---------------|-------------------------------|----|--|--|--| | | SAMPLED | EXTRACTED/ANALYZED | | | | | | JC34340-3 | 12/20/16 | 12/29/16 | - | Confirmation run; the acid spike standard was not added to the LCS. No action. | | | | | | | | | | | | All samples extracted and analyzed within method recommended holding time except for the cases described in this document. Sample preservation appropriate. | | | | | | | | described in this | document. San | ipie preservation appropriate | | | | | | | | | | | | | | Cooler
temperature | (Criteria: 4 | + 2 °C): | 5.4°C | |--------------------|--------------|----------|-------| | | 1 | /- | | #### **Actions** Results will be qualified based on the criteria of the following Table: Table 1. Holding Time Actions for Semivolatile Analyses | | | Preserved Criteria | | tion | |-------------|-----------|--|---------------------------|---| | Matrix | Preserved | | | Non-Detected
Associated
Compounds | | | No | ≤7 days (for extraction)
≤40 days (for analysis) | Use professional judgment | | | | No | > 7 days (for extraction)
> 40 days (for analysis) | J | Use
professional
judgment | | Aqueous | Yes | ≤7 days (for extraction)
≤40 days (for analysis) | No qualification | | | | Yes | > 7 days (for extraction)
> 40 days (for analysis) | J | UJ | | | Yes/No | Grossly Exceeded | l T | UJ or R | | | No | ≤ 14 days (for extraction)
≤ 40 days (for analysis) | Use professional judgment | | | | No | > 14 days (for extraction)
> 40 days (for analysis) | J | Use
professional
judgment | | Non-Aqueous | Yes | ≤14 days (for extraction)
≤40 days (for analysis) | No qua | lification | | | Yes | > 14 days (for extraction)
> 40 days (for analysis) | J | UJ | | | Yes/No | Grossly Exceeded | J. | UJ or R | | All criteria were met | X | |-----------------------------------|-----| | Criteria were not met see below _ | 200 | #### **GC/MS TUNING** The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits - _X__ The DFTPP performance results were reviewed and found to be within the specified criteria. - _X__ DFTPP tuning was performed for every 12 hours of sample analysis. If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected. Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique. All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable Notes: No data should be qualified based of DFTPP failure. The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique. | List | the | samples | affected: | |------|-----|---------|-----------| | | | | | | | | | | | _ | | | | #### Actions: - 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R). - 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized. - State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements. - 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds. | All criteria were metX | _ | |------------------------|---| | Criteria were not met | | | and/or see below | | #### INITIAL CALIBRATION VERIFICATION Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. | Date of ini | tial calibration: | 12/21/16_(SIM) | | 12/15/16_ | (SIM) | | |------------------------------|-------------------|---|----------|-----------|---------------------|--| | Instrument ID numbers:GCMS3M | | | | GCMS4M | | | | Matrix/Level:Aqueous/low | | | | | | | | Instrument | t ID numbers:_ | _11/16/16;_12/01/16_
GCMS2M_
Aqueous/low_ | - Table | | | | | Instrument | t ID numbers:_ | 12/23/16_(SCAN)
GCMS5P
Aqueous/low_ | | GCMSM | 6_(SCAN) | | | Instrument | t ID numbers:_ | 12/28-29/16_(SCAI
GCMSP
Aqueous/low_ | | | | | | DATE | | CRITERIA OUT
RFs. %RSD. %D. r | COMPOUND | | SAMPLES
AFFECTED | | **Note:** Instruments GCMS3M; GCMS4P; and GCMS3P were also employed for running QC samples for this data packages. QC samples not validated. Initial and initial calibration verification meets the method and guidance validation document performance criteria. ### Actions: Qualify the initial calibration analytes listed in Table 2 using the following criteria: Table 3. Initial Calibration Actions for Semivolatile Analysis | #************************************* | Action | | | |---|---|-----------------------------------|--| | Criteria | Detect | Non-detect | | | Initial Calibration not performed at specified frequency and sequence | Use professional judgment R | Use professional
judgment
R | | | Initial Calibration not performed at the specified concentrations | ı | נט | | | RRF < Minimum RRF in Table 2 for target analyte | Use professional
judgment
J+ or R | R | | | RRF ≥ Minimum RRF in Table 2 for target analyte | No qualification | No qualification | | | %RSD > Maximum %RSD in Table 2 for target analyte | 1 | Use professional judgment | | | %RSD ≤ Maximum %RSD in Table 2 for target analyte | No qualification | No qualification | | # **Initial Calibration** $\begin{tabular}{ll} Table 2. RRF, \% RSD, and \% D \ Acceptance \ Criteria \ in Initial \ Calibration \ and \ CCV \ for \ Semivolatile \ Analysis \end{tabular}$ | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum
%D ¹ | Opening
Maximum
%D ^t | |-------------------------------|----------------|-----------------|---------------------------------------|---------------------------------------| | 1,4-Dioxane | 0.010 | 40.0 | ± 40.0 | ±50.0 | | Benzaldehyde | 0.100 | 40.0 | ± 40.0 | ± 50.0 | | Phenol | 0.080 | 20.0 | ±20.0 | ±25.0 | | Bis(2-chloroethyl)ether | 0.100 | 20.0 | ± 20.0 | ± 25.0 | | 2-Chlorophenol | 0.200 | 20.0 | ± 20.0 | ± 25.0 | | 2-Methylphenol | 0.010 | 20.0 | ±20.0 | ±25.0 | | 3-Methylphenol | 0.010 | 20.0 | ±20.0 | ±25.0 | | 2,2'-Oxybis-(1-chloropropane) | 0.010 | 20.0 | ± 25.0 | ± 50.0 | | Acetophenone | 0.060 | 20.0 | ±20.0 | ±25.0 | | 4-Methylphenol | 0.010 | 20.0 | ±20.0 | ± 25.0 | | N-Nitroso-di-n-propylamine | 0.080 | 20.0 | ±25.0 | ± 25.0 | | Hexachloroethane | 0.100 | 20.0 | ±20.0 | ±25.0 | | Nitrobenzene | 0.090 | 20.0 | ± 20.0 | ±25.0 | | Isophorone | 0.100 | 20.0 | ±20.0 | ± 25.0 | | 2-Nitrophenol | 0.060 | 20.0 | ± 20.0 | ±25.0 | | 2,4-Dimethylphenol | 0.050 | 20.0 | ± 25.0 | ± 50.0 | | Bis(2-chloroethoxy)methane | 0.080 | 20.0 | ± 20.0 | ±25.0 | | 2,4-Dichlorophenol | 0.060 | 20.0 | ±20.0 | ±25.0 | | Naphthalene | 0.200 | 20.0 | ± 20.0 | ±25.0 | | 4-Chloroaniline | 0.010 | 40.0 | ± 40.0 | ±50.0 | | Hexachlorobutadiene | 0.040 | 20.0 | ±20.0 | ±25.0 | | Caprolactam | 0.010 | 40.0 | ± 30.0 | ± 50.0 | | 4-Chloro-3-methylphenol | 0.040 | 20.0 | ± 20.0 | ±25.0 | | 2-Methylnaphthalene | 0.100 | 20.0 | ±20.0 | ±25.0 | | Hexachlorocyclopentadiene | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | 2,4,6-Trichlorophenol | 0.090 | 20.0 | ±20.0 | ±25.0 | | 2,4,5-Trichlorophenol | 0.100 | 20.0 | ± 20.0 | ±25.0 | | 1,1'-Biphenyl | 0.200 | 20.0 | ± 20.0 | ± 25.0 | | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum
%D ¹ | Opening
Maximum
%D¹ | |----------------------------|----------------|-----------------|---------------------------------------|---------------------------| | 2-Chloronaphthalene | 0.300 | 20.0 | ± 20.0 | ±25.0 | | 2-Nitroaniline | 0.060 | 20.0 | ± 25.0 | ±25.0 | | Dimethylphthalate | 0.300 | 20.0 | ± 25.0 | ±25.0 | | 2,6-Dinitrotoluene | 0.080 | 20.0 | ± 20.0 | ± 25.0 | | Acenaphthylene | 0.400 | 20.0 | ± 20.0 | ±25.0 | | 3-Nitroaniline | 0.010 | 20.0 | ± 25.0 | ± 50.0 | | Acenaphthene | 0.200 | 20.0 | ± 20.0 | ± 25.0 | | 2,4-Dinitrophenol | 0.010 | 40.0 | ± 50.0 | ± 50.0 | | 4-Nitrophenol | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | Dibenzofuran | 0.300 | 20.0 | ± 20.0 | ±25.0 | | 2,4-Dinitrotoluene | 0.070 | 20.0 | ± 20.0 | ±25.0 | | Diethylphthalate | 0.300 | 20.0 | ± 20.0 | ±25.0 | | 1,2,4,5-Tetrachlorobenzene | 0.100 | 20.0 | ± 20.0 | ±25.0 | | 4-Chlorophenyl-phenylether | 0.100 | 20.0 | ±20.0 | ± 25.0 | | Fluorene | 0.200 | 20.0 | ±20.0 | ± 25.0 | | 4-Nitroaniline | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | 4,6-Dinitro-2-methylphenol | 0.010 | 40.0 | ± 30.0 | ± 50.0 | | 4-Bromophenyl-phenyl ether | 0.070 | 20.0 | ±20.0 | ± 25.0 | | N-Nitrosodiphenylamine | 0.100 | 20.0 | ± 20.0 | ± 25.0 | | Hexachlorobenzene | 0.050 | 20.0 | ±20.0 | ± 25.0 | | Atrazine | 0.010 | 40.0 | ± 25.0 | ± 50.0 | | Pentachlorophenol | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | Phenanthrene | 0.200 | 20.0 | ± 20.0 | ±25.0 | | Anthracene | 0.200 | 20.0 | ± 20.0 | ± 25.0 | | Carbazole | 0.050 | 20.0 | ± 20.0 | ±25.0 | | Di-n-butylphthalate | 0.500 | 20.0 | ± 20.0 | ±25.0 | | Fluoranthene | 0.100 | 20.0 | ± 20.0 | ±25.0 | | Pyrene | 0.400 | 20.0 | ±25.0 | ± 50.0 | | Butylbenzylphthalate | 0.100 | 20.0 | ±25.0 | ± 50.0 | | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum
%D ^t | Opening
Maximum
%D ¹ | |-----------------------------|----------------|-----------------|---------------------------------------|---------------------------------------| | 3,3'-Dichlorobenzidine | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | Benzo(a)anthracene | 0.300 | 20.0 | ±20.0 | ± 25.0 | | Chrysene | 0.200 | 20.0 | ±20.0 | ± 50.0 | | Bis(2-ethylhexyl) phthalate | 0.200 | 20.0 | ±25.0 | ± 50.0 | | Di-n-octylphthalate | 0.010 | 40.0 | ± 40.0 | ± 50.0 | | Benzo(b)fluoranthene | 0.010 | 20.0 | ±25.0 | ± 50.0 | | Benzo(k)fluoranthene | 0.010 | 20.0 | ±25.0 | ± 50.0 | | Benzo(a)pyrene | 0.010 | 20.0 | ±20.0 | ± 50.0 | | Indeno(1,2,3-cd)pyrene | 0.010 | 20.0 | ±25.0 | ± 50.0 | | Dibenzo(a,h)anthracene | 0.010 | 20.0 | ±25.0 | ± 50.0 | |
Benzo(g,h,i)perylene | 0.010 | 20.0 | ±30.0 | ± 50.0 | | 2,3,4,6-Tetrachlorophenol | 0.040 | 20.0 | ± 20.0 | ± 50.0 | | Naphthalene | 0.600 | 20.0 | ±25.0 | ±25.0 | | 2-Methylnaphthalene | 0.300 | 20.0 | ±20.0 | ± 25.0 | | Acenaphthylene | 0.900 | 20.0 | ± 20.0 | ±25.0 | | Acenaphthene | 0.500 | 20.0 | ± 20.0 | ±25.0 | | Fluorene | 0.700 | 20.0 | ±25.0 | ± 50.0 | | Phenanthrene | 0.300 | 20.0 | ± 25.0 | ± 50.0 | | Anthracene | 0.400 | 20.0 | ±25.0 | ± 50.0 | | Fluoranthene | 0.400 | 20.0 | ± 25.0 | ± 50.0 | | Pyrene | 0.500 | 20.0 | ±30.0 | ± 50.0 | | Benzo(a)anthracene | 0.400 | 20.0 | ±25.0 | ± 50.0 | | Chyrsene | 0.400 | 20.0 | ±25.0 | ± 50.0 | | Benzo(b)fluoranthene | 0.100 | 20.0 | ±30.0 | ± 50.0 | | Benzo(k)fluoranthene | 0.100 | 20.0 | ±30.0 | ± 50.0 | | Benzo(a)pyrene | 0.100 | 20.0 | ±25.0 | ± 50.0 | | Indeno(1,2,3-cd)pyrene | 0.100 | 20.0 | ± 40.0 | ± 50.0 | | Dibenzo(a,h)anthracene | 0.010 | 25.0 | ± 40.0 | ±50.0 | | Benzo(g,h,i)perylene | 0.020 | 25.0 | ± 40.0 | ± 50.0 | | Pentachlorophenol | 0.010 | 40.0 | ± 50.0 | ± 50.0 | | |---------------------------------|-------|------|--------|--------|--| | Deuterated Monitoring Compounds | | | | | | | Analyte | Minimum
RRF | Maximum
%RSD | Opening
Maximum
%D ¹ | Closing
Maximum
%D | |---|----------------|-----------------|---------------------------------------|--------------------------| | 1,4-Dioxane-d ₈ | 0.010 | 20.0 | ±25.0 | ± 50.0 | | Phenol-d ₅ | 0.010 | 20.0 | ±25.0 | ±25.0 | | Bis-(2-chloroethyl)ether-d ₈ | 0.100 | 20.0 | ±20.0 | ±25.0 | | 2-Chlorophenol-d4 | 0.200 | 20.0 | ± 20.0 | ±25.0 | | 4-Methylphenol-d _B | 0.010 | 20.0 | ±20.0 | ±25.0 | | 4-Chloroaniline-d4 | 0.010 | 40.0 | ±40.0 | ± 50.0 | | Nitrobenzene-d ₅ | 0.050 | 20.0 | ±20.0 | ± 25.0 | | 2-Nitrophenol-d4 | 0.050 | 20.0 | ± 20.0 | ±25.0 | | 2,4-Dichlorophenol-d3 | 0.060 | 20.0 | ± 20.0 | ± 25.0 | | Dimethylphthalate-d ₆ | 0.300 | 20.0 | ± 20.0 | ± 25.0 | | Acenaphthylene-d ₈ | 0.400 | 20.0 | ±20.0 | ± 25.0 | | 4-Nitrophenol-d ₄ | 0.010 | 40.0 | ±40.0 | ± 50.0 | | Fluorene-d ₁₀ | 0.100 | 20.0 | ± 20.0 | ±25.0 | | 4,6-Dinitro-2-methylphenol-d2 | 0.010 | 40.0 | ±30.0 | ± 50.0 | | Anthracene-d ₁₀ | 0.300 | 20.0 | ±20.0 | ± 25.0 | | Pyrene-d ₁₀ | 0.300 | 20.0 | ±25.0 | ± 50.0 | | Benzo(a)pyrene-d ₁₂ | 0.010 | 20.0 | ± 20.0 | ± 50.0 | | Fluoranthene-d ₁₀ (SIM) | 0.400 | 20.0 | ±25.0 | ± 50.0 | | 2-Methylnaphthalene-d ₁₀ (SIM) | 0.300 | 20.0 | ± 20.0 | ±25.0 | If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV. Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL. | All criteria were met | | |-----------------------|--| | Criteria were not met | | | and/or see belowX | | ## CONTINUING CALIBRATION VERIFICATION Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. | Date of initial calibration: | 11/16/16;_12/01/16_(SCAN) | 12/21/16_(SIM) | |--------------------------------------|---------------------------------------|--------------------| | Date of initial calibration verifica | ation (ICV):_11/16-17/16;_12/01/16 | 12/21-22/16 | | Date of continuing calibration v | erification (CCV):_12/27/16;_12/29/16 | 12/29/16;_12/30/16 | | | 01/03/17 | 12/30/16 | | Date of closing CCV: | • 10 | <u>-</u> | | Instrument ID numbers: | GCMS2M | GCMS3M | | Matrix/Level: | Aqueous/low | Aqueous/low | | Date of initial calibration: | 12/15/16_(SIM) | 12/23/16_(Scan) | | | ation (ICV):_12/15/16;_12/19/16 | | | Date of continuing calibration v | erification (CCV):_12/29-31/16 | 12/29/16;_12/30/16 | | Date of closing CCV: | · 10-7-10 | <u> </u> | | Instrument ID numbers: | GCMS4M | GCM5P | | Matrix/Level: | Aqueous/low | Aqueous/low | | Date of initial calibration:11 | /28-29/16_(Scan) | 12/27-28/16_(Scan) | | Date of initial calibration verifica | | 12/27/28/16 | | | erification (CCV):_12/30/16;_01/03/17 | 01/03-04/17 | | Date of closing CCV: | | | | Instrument ID numbers: | | GCMSM | | Matrix/Level: | | Aqueous/low | | | | | | DATE | LAB FILE | CRITERIA OUT | COMPOUND | SAMPLES | |----------|-----------|------------------------|----------------------------|-----------| | | ID# | RFs, %RSD, <u>%D</u> , | | AFFECTED | | | | Г | | | | GCMS2M | | | | | | 12/27/16 | cc3953-50 | 27.6 | 1,4-dioxane*^ | JC34340-1 | | | | 35.1 | Hexachlorocyclopentadiene* | | | | | 34.7 | Pentachlorophenol* | | | | | -27.8 | di-n-octylphthalate* | | | | | -35.4 | Indeno(1,2,3-cd)pyrene* | | | 12/29/16 | cc3953-25 | 29.6 | 1,4-dioxane*^^ | JC34340-7 | | | | 37.5 | Hexachlorocyclopentadiene* | | | | | 40.8 | Pentachlorophenol | | | | | -25.3 | Butylbenzylphthalate | | | | | -27.6 | di-n-octylphthalate* | | | | | -33.4 | Indeno(1,2,3-cd)pyrene* | | | 01/03/17 | cc3953-50 | 27.8 | 1,4-dioxane^* | JC34340-4 | | | | 27.9 | Hexachlorocyclopentadiene* | | | | | 27.2 | Pentachlorophenol* | | | DATE | LAB FILE
ID# | CRITERIA OUT
RFs, %RSD, <u>%D</u> ,
r | COMPOUND | SAMPLES
AFFECTED | |----------|-----------------|---|------------------------------|----------------------------| | GCMS2M | , | · | | | | 01/03/17 | cc3953-50 | -34.6 | di-n-octylphthalate* | JC34340-4 | | | | -28.1 | Indeno(1,2,3-cd)pyrene* | | | 01/03/17 | | | 1,4-dioxane* | JC34340-2 | | | | 40.2 ✓ | Hexachlorocyclopentadiene | | | | | 20.2 🗸 | 2,3,4,6-tetrachlorophenol | | | | | 30.6 | Pentachlorophenol* | | | | | -26.0 | di-n-octylphthalate* | | | | | -30.3 | Indeno(1,2,3-cd)pyrene* | <u> </u> | | GCMS3M | | | | | | 12/30/16 | cc3145-0.5 | -24.6 | 1,4-dioxane* | JC34340-9; -10;
-12; -8 | | GCMS5P | | | | | | 12/29/16 | cc1717-50 | 21.4 | Hexachlorobutadiene | JC34340-8; -9; -10; | | | | 26.0 | Hexachlorocyclopentadiene* | -11; -12 | | | | 26.9 | 4-nitrophenol* | | | GCMSP | | | | | | 12/30/16 | cc4851-50 | -45.1 ✓ | bis(2-chloroethyl)ether | JC34340-3; -16 | | | | 24.8 | 4-chloroaniline* | | | | | -23.1 ✓ | Hexachlorobutadiene | | | | | -30.8 | 2,4-dinitropheno*l | | | | -29.1 | | 2,3,4,6-tetrachlorophenol | | | | | -23.4 | 4,6-dinitro-2-methyl phenol* | | | 01/03/17 | CC4851-50 | -29.7 ✓ | Hexachlorobutadiene | JC34340-16; -15 | | | | -24.3 | 2,3,4,6-tetrachlorophenol | | | | -21.3 | | 4,6-dinitro-2-methyl phenol* | | | | | -24.8 | Pentachlorophenol* | | | 01/03/17 | CC4852-50 | 26.3 | Benzaldehyde* | JC34340-16; -15 | **Note:** Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document. Results qualified as estimated (J or UJ) in affected samples. No action taken for QC samples. No closing calibration verification included in data package. No action taken, professional judgment. ^{* %} difference outside was method performance criteria but within the guidance document performance criteria. No action taken. [^] Quantitated in the SIM mode. ^{^^} Reported from run on 01/04/17 (2x dilution) #### Actions: Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period). All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data. Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs: Table 4. CCV Actions for Semivolatile Analysis | | Galactic for Claster CCV | Ac | Action | | | |---|---|--------------------------------------|--------------------------------------|--|--| | Criteria for Opening CCV | Criteria for Closing CCV | Detect | Non-detect | | | | CCV not performed at required frequency and sequence | CCV not performed at required frequency | Use
professional
judgment
R | Use
professional
judgment
R | | | | CCV not performed at specified concentration | CCV not performed at specified concentration | Use
professional
judgment | Use
professional
judgment | | | | RRF < Minimum RRF in Table 2
for target analyte | F in Table 2 RRF < Minimum RRF in Table 2 for target analyte | | R | | | | RRF ≥ Minimum RRF in Table 2 for target analyte | RRF≥ Minimum RRF in Table 2
for target analyte | No
qualification | No
qualification | | | | %D outside the Opening
Maximum %D limits in Table 2
for target analyte | %D outside the Closing Maximum %D limits in Table 2 for target J analyte | | UJ | | | | %D within the inclusive Opening
Maximum %D limits in Table 2
for target analyte | %D within the inclusive Closing
Maximum %D limits in Table 2
for target analyte | No
qualification | No
qualification | | | | All criteria were met _ | | |-------------------------|----| | Criteria were not met | | | and/or see below | _X | CONCENTRATION ### BLANK ANALYSIS RESULTS (Sections 1 & 2) LABID The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other
data. List the contamination in the blanks below. High and low levels blanks must be treated separately. Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L. The concentration of target compounds in all blanks must be less than its CRQL listed in the method. Samples taken from a drinking water tap do not have and associated field blank. COMPOUND ### Laboratory blanks DATE | ANALYZED | LAB ID | MATRIX | COMPOUND | UNITS | |--|---|-----------------------------------|------------------------------|-------------------------------| | _No_target_an |
alytes_detected_in_ | _method_bla | anks_except_for_the_cases_c | described_in_this_document | | _12/30/16 | OP99540A-MB1
 | Aq./low_ | 1,4-Dioxane | 0.390_ug/l | | Note: | No action taken. 1 | - ————
1,4-dioxane | not detected in sample JC343 | 340-15 and reported from the | | 110101 | scan mode run in | sample JC3 | 34340-16. | | | Field/Equipme | | sample JC3 | 34340-16. | | | | | sample JC3 LEVEL/ MATRIX | COMPOUND | CONCENTRATION
UNITS | | Field/Equipme DATE ANALYZED _No_target_an | ent/Trip blank LAB ID alytes_detected_in_ | LEVEL/
MATRIX
_the_field/ed | | UNITS rith_this_data_package | Note: No action taken, concentration below the reporting limit. LEVEL | All criteria were met _ | X | |-------------------------|---| | Criteria were not met | | | and/or see below | | # BLANK ANALYSIS RESULTS (Section 3) ## **Blank Actions** Qualify samples based on the criteria summarized in Table 5: Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis | Blank Type | Blank Result | Sample Result | Action | |-------------------------|---|---------------------------|---| | Detect | Detect | Non-detect | No qualification | | | < CRQL | < CRQL | Report at CRQL and qualify as non-detect (U) | | | | ≥ CRQL | Use professional judgment | | | | < CRQL | Report at CRQL and qualify as non-detect (U) | | ≥ CRQL
Method, | ≥CRQL | ≥ CRQL but < Blank Result | Report at sample results and qualify as non-detect (U) or as unusable (R) | | TCLP/SPLP
LEB, Field | | ≥ CRQL and ≥ Blank Result | Use professional judgment | | | Grossly high | Detect | Report at sample results and qualify as unusable (R) | | | TIC > 5.0 ug/L
(water) or 0.0050
mg/L (TCLP
leachate)
or
TIC > 170 ug/Kg
(soil) | Detect | Use professional judgment | # List samples qualified | CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED
SAMPLES | |----------------------------|----------|------------|----------|-----|---------------------| %R > Upper Acceptance Limit All criteria were met __X__ Criteria were not met and/or see below No qualification ## SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs) Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6. The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive. If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data. Table 7. DMC Actions for Semivolatile Analysis List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery. | Matrix:Groundwater | | | |-----------------------|--|-----------------------------| | SAMPLE ID | SURROGATE COMPOUND | ACTION | | _this_documentNondeut | criteria_in_all_samples_analyzed_except_ferated_surrogates_added_to_the_samples_the_cases_described_in_this_document | and_were_within_laboratory_ | **Note:** Surrogate standards not recovered in sample JC34340-16 due to dilution. Surrogate standards recovered within the laboratory control limits in the original run. Table 8. Semivolatile DMCs and the Associated Target Analytes | 1,4-Dioxane-d ₈ (DMC-1) | Phenol-d ₅ (DMC-2) | Bis(2-Chloroethyl) ether-d ₈ (DMC-3) | |---|---------------------------------------|---| | 1,4-Dioxane | Benzaldehyde | Bis(2-chloroethyl)ether | | | Phenol | 2,2'-Oxybis(1-chloropropane) | | | | Bis(2-chloroethoxy)methane | | 2-Chlorophenol-d4(DMC-4) | 4-Methylphenol-d ₈ (DMC-5) | 4-Chloroaniline-d4 (DMC-6) | | 2-Chlorophenol | 2-Methylphenol | 4-Chloroaniline | | | 3-Methylphenol | Hexachlorocyclopentadiene | | | 4-Methylphenol | Dichlorobenzidine | | | 2,4-Dimethylphenol | | | Nitrobenzene-d ₅ (DMC-7) | 2-Nitrophenol-d ₄ (DMC-8) | 2,4-Dichlorophenol-d ₃ (DMC-9) | | Acetophenone | Isophorone | 2,4-Dichlorophenol | | N-Nitroso-di-n-propylamine | 2-Nitrophenol | Hexachlorobutadiene | | Hexachloroethane | | Hexachlorocyclopentadiene | | Nitrobenzene | | 4-Chloro-3-methylphenol | | 2,6-Dinitrotoluene | | 2,4,6-Trichlorophenol | | 2,4-Dinitrotoluene | | 2,4,5-Trichlorophenol | | N-Nitrosodiphenylamine | | 1,2,4,5-Tetrachlorobenzene | | | | *Pentachlorophenol | | | | 2,3,4,6-Tetrachlorophenol | | Dimethylphthalate-d ₆ (DMC-10) | Acenaphthylene-ds (DMC-11) | 4-Nitrophenol-d ₄ (DMC-12) | | Caprolactam | *Naphthalene | 2-Nitroaniline | | 1,1'-Biphenyl | *2-Methylnaphthalene | 3-Nitroaniline | | Dimethylphthalate | 2-Chloronaphthalene | 2,4-Dinitrophenol | | Diethylphthalate | *Acenaphthylene | 4-Nitrophenol | | Di-n-butylphthalate | *Acenaphthene | 4-Nitroaniline | | Butylbenzylphthalate | | | | Bis(2-ethylhexyl) phthalate | | | | Di-n-octylphthalate | | | | Fluorene-d ₁₀ (DMC-13) | 4,6-Dinitro-2-methylphenol-d2 (DMC-14) | Anthracene-d ₁₀ (DMC-15) | |-----------------------------------|---|-------------------------------------| | Dibenzofuran | 4,6-Dinitro-2-methylphenol | Hexachlorobenzene | | *Fluorene | | Atrazine | | 4-Chlorophenyl-phenylether | | *Phenanthrene | | 4-Bromophenyl-phenylether | | *Anthracene | | Carbazole | | | | Pyrene-d ₁₀ (DMC-16) | Benzo(a)pyrene-d ₁₂ (DMC-17) | | | *Fluoranthene | 3,3'-Dichlorobenzidine | | | *Pyrene | *Benzo(b)fluoranthene | | | *Benzo(a)anthracene | *Benzo(k)fluoranthene | | | *Chrysene | *Benzo(a)pyrene | | | | *Indeno(1,2,3-cd)pyrene | | | | *Dibenzo(a,h)anthracene | | | | *Benzo(g,h,i)perylene | | ^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only. Table 9. Semivolatile SIM DMCs and the Associated Target Analytes | Fluoranthene-d10
(DMC-1) | 2-Methylnaphthalene-d10
(DMC-2) | | | | | | | |-----------------------------|------------------------------------|--|--|--|--|--|--| | Fluoranthene | Naphthalene | | | | | | | | Pyrene | 2-Methylnaphthalene | | | | | | | | Benzo(a)anthracene | Acenaphthylene | | | | | | | | Chrysene | Acenaphthene | | | | | | | | Benzo(b)fluoranthene | Fluorene | | | | | | | | Benzo(k)fluoranthene | Pentachlorophenol | | | | | | | | Benzo(a)pyrene | Phenanthrene | | | | | | | | Indeno(1,2,3-cd)pyrene | Anthracene | | | | | | | | Dibenzo(a,h)anthracene | | | | | | | | | Benzo(g,h,i)perylene | | | | | | | | | All criteria were met _ | | |-------------------------|----| | Criteria were not met | | | and/or see below | _X | Method: SW846 8270D ## VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit. ## 1. MS/MSD Recoveries and Precision Criteria The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed. NOTES: Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD. For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified. List the %Rs, RPD of the compounds which do not meet the criteria. | Sample ID:JC34340-1 | Matrix/Level:Groundwater | |----------------------------|--------------------------| | Sample ID:JC34340-2_(SIM) | Matrix/Level:Groundwater | | Sample ID:JC34340-8 | Matrix/Level:Groundwater | | Sample ID:JC34280-5_(SIM) | Matrix/Level:Groundwater | | Sample ID:JC34064-7 | Matrix/Level:Groundwater | | Sample ID:JC34340-16 | Matrix/Level:Groundwater | | Sample ID:JC34340-16_(SIM) | Matrix/Level:Groundwater | | Sample ID:JC34180-1_(SIM) | Matrix/Level:Groundwater | The QC reported here applies to the following samples: JC34340-4, JC34340-7 |
Compound 2,4-Dimethyl- | JC3406
ug/l | 4-7
Q | Spike
ug/l | MS
ug/l | MS
% | Spike
ug/l | MSD
ug/l | MSD
% | RPD | Limits
Rec/RPD | |---|----------------|----------|-------------------|--------------------|---------------------|-------------------|-------------------|-----------------------|-------------------|-------------------------------------| | phenol
4-Chloroaniline
3,3'-Dichloro- | ND
ND | | 109
109 | 23.6
ND | 22* a
0* a | 109
109 | 17.9
ND | 16* a
0* a | 27* b
nc | 33-132/23
10-110/55 | | benzidine
3-Nitroaniline
4-Nitroaniline | ND
ND
ND | | 217
109
109 | ND
11.8
31.3 | 0* a
11
29* a | 217
109
109 | ND
8.6
22.1 | 0* a
8* a
20* a | nc
31
34* b | 10-107/47
10-110/50
38-118/25 | - (a) Outside control limits due to matrix interference. - (b) Outside in-house control limits. ^{* -} outside control limits **Note:** No action taken. MS/MSD results apply to unspiked sample. Unspiked sample was from another job. The QC reported here applies to the following samples: Method: SW846 8270D JC34340-15, JC34340-16 | | JC34340 | 0-16 | Spike | MS | MS | Spike | MSD | MSD | | Limits | |-------------|---------|------|-------|------|------|-------|------|------|-----|-----------| | Compound | ug/l | Q | ug/l | ug/l | % | ug/l | ug/i | % | RPD | Rec/RPD | | 1,4-Dioxane | 1520 b | | 54.1 | 1580 | 0* a | 51.3 | 1800 | 0* a | 13 | 10-119/31 | ⁽a) Outside control limits due to high level in sample relative to spike amount. Note: No action taken, outside control limits due to high level in sample relative to spike amount. The QC reported here applies to the following samples: Method: SW846 8270D BY SIM JC34340-4, JC34340-7 | | JC34180 | -1 | Spike | MS | MS | Spike | MSD | MSD | | Limits | |----------------------|---------|----|-------|------|---------|-------|------|---------|-------|-----------| | Compound | ug/i | Q | ug/l | ug/l | % | ug/l | ug/l | % | RPD | Rec/RPD | | Benzo(a)anthracene | ND | | 2.04 | 4.74 | 232* b | 2.04 | 5.20 | 255* b | 9 | 25-135/33 | | Benzo(a)pyrene | ND | | 2.04 | 2.18 | 107 | 2.04 | 2.46 | 121* b | 12 | 10-116/38 | | Benzo(b)fluoranthene | ND | | 2.04 | 2.23 | 109 | 2.04 | 3.39 | 166* b | 41* c | 10-131/40 | | Chrysene | ND | | 2.04 | 5.06 | 248* b | 2.04 | 6.36 | 312* b | 23 | 31-125/33 | | Naphthalene | ND | | 2.04 | 72.8 | 3567* b | 2.04 | 100 | 4900* b | 31 | 23-140/36 | ⁽b) Outside control limits due to matrix interference. **Note:** No action taken. MS/MSD results apply to unspiked sample. Unspiked sample was from another iob. The QC reported here applies to the following samples: Method: SW846 8270D BY SIM JC34340-15, JC34340-16 | | JC34340 | -16 | Spike | MS | MS | Spike | MSD | MSD | | Limits | |----------------|---------|-----|-------|-------|------|-------|-------|------|-------|-----------| | Compound | ug/i | Q | ug/l | ug/l | % | ug/l | ug/l | % | RPD | Rec/RPD | | Benzo(a)pyrene | ND | | 1.03 | 0.675 | 66 | 1.05 | 0.420 | 40 | 47* a | 10-116/38 | | 1,4-Dioxane | 1670 | EB | 1.03 | 1240 | 0* b | 1.05 | 1450 | 0* b | 16 | 20-160/30 | ⁽a) Analytical precision exceeds in-house control limits. Note: No qualification made base on RPD results, professional judgment. No action taken 1,4-dioxane MS/MSD % recoveries outside control limit due to high level in sample relative to spike amount. Note: The acid standard was not added to sample JC34340-1MS/-1MSD. No action taken. ⁽b) Result is from Run #2. ^{* -} outside control limits ⁽c) Analytical precision exceeds in-house control limits. ^{* -} outside control limits ⁽b) Outside control limits due to high level in sample relative to spike amount. ^{* =} Outside of Control Limits. - * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit. - * If QC limits are not available, use limits of 70 130 %. ## Actions: | QUALITY | %R < LL | %R > UL | |--------------------|---------|---------| | Positive results | J | J | | Nondetects results | R | Accept | MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples: If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ). If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R). A separate worksheet should be used for each MS/MSD pair. All criteria were met __X__ Criteria were not met and/or see below ____ #### INTERNAL STANDARD PERFORMANCE The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation. List the internal standard area of samples which do not meet the criteria. | DATE | SAMPLE ID | IS OUT | IS AREA | ACCEPTABLE RANGE | ACTION | |---------------|----------------|-----------------------------|--------------|----------------------|----------| | Internal area | meets the requ | uired criteria for batch sa | mples corres | ponding to this data | package. | ## Action: - 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below): - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-). - b. Do not qualify non-detected associated compounds. - 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration): - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+). - b. Qualify non-detected associated compounds as unusable (R). - 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary. - 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met. - 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary. **Note:** Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance. State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration. ## Actions: Table 10. Internal Standard Actions for Semivolatile Analysis | Criteria | Ac | tion | |--|------------------|------------------| | Criteria | Detect | Non-detect | | Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL | J+ | R | | 20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL |]+ | UJ | | 50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL | No qualification | No qualification | | Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL | J- | No qualification | | RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds | R | R | | RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds | No qualification | No qualification | | | | All criteria were metX Criteria were not met and/or see below | |---|--|--| | TARGET CO | MPOUND IDENTIFICATION | | | Criteria: | | | | Is the Relativ
RRT [opening
calibration]. | ve Retention Times (RRTs) of reported componing Continuing Calibration Verification (CC) | unds within ±0.06 RRT units of the standard v) or mid-point standard from the initia | | List compour | nds not meeting the criteria described above: | | | Sample ID | Compounds | Actions | | spectrum fro | must be present in the sample spectrum. The relative intensities of these ions must a sample spectra (e.g., for an ion with an a the corresponding sample ion abundance lons present at greater than 10% in the sample ion. | ning CCV or mid-point standard from initial ctrum at a relative intensity greater than 10% agree within ±20% between the standard and bundance of 50% in the standard spectrum | | List compour | nds not meeting the criteria described above: | | | Sample ID | Compounds | Actions | | ldentified_c | ompounds_meet_the_required_criteria | | ## Action: - 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred. - 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes. ## TENTATIVELY IDENTIFIED COMPOUNDS (TICS) NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS). List TICs | Sample ID | Compound | Sample ID | Compound | |-----------|----------|-----------|----------| | | | | | ## Action: - 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J). - 2. General actions related to the review of TIC results are as follows: - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J). - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory. - 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound). - 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons). - 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable". - 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results. - 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications. - 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs | All criteria were met _ | X | |-------------------------|---| | Criteria were not met | | | and/or see below | 1 | # SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS) ## Action: - 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample. - 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data. - 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11). - 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs. - 5. Results between MDL and CRQL should be qualified as estimated "J". - 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported. Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples | Criteria | Ad | tion | |-------------------------|---------------------------|---------------------------| | Criteria | Detects | Non-detects | | %Solids < 10.0% | Use professional judgment | Use professional judgment | | 10.0% ≤ %Solids ≤ 30.0% | Use professional judgment | Use professional judgment | | %Solids > 30.0% | No qualification | No qualification | #### SAMPLE QUANTITATION The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation: # **QUANTITATION LIMITS** # A. Dilution performed | SAMPLE ID | DILUTION
FACTOR | REASON FOR DILUTION | |---|--------------------|---------------------------------------| | JC34340-7 | 2 x | 1,4-dioxane outside calibration range | | JC34340-8 | 5 x | 1,4-dioxane outside calibration range | | JC34340-16 | 50 x | 1,4-dioxane outside calibration range | | | | | | | | | | | | | | 900000000000000000000000000000000000000 | 2000 | | | | | | | | All criteria were met _ | | _ | |-------------------------|-----|---| | Criteria were not met | | | | and/or see below | _X_ | _ | ## FIELD DUPLICATE PRECISION | Sample IDs: | JC34340-7/-8 | Matrix:_ | Groundwater | |-------------|--------------|----------|-------------| |-------------|--------------|----------|-------------| Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. The project QAPP should be reviewed for project-specific information. Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled. | COMPOUND | SQL
ug/L | SAMPLE
CONC. (ug/l) | DUPLICATE
CONC. (ug/l) | RPD | ACTION | |-------------|-------------|------------------------|---------------------------|------|--| | 1,4-dioxane | 3.6 | 105 | 220 | 71 % | Results qualified as estimated (J) in affected samples | | | | | | | d guidance document
ses described in this | | document. | | : | | | | | All criteria were met _ | X | _ | |-------------------------|---|---| | Criteria were not met | | | | and/or see below | | | ## OTHER ISSUES | A. | System Perform | ance | | |----------|--------------------|----------------------------------|--| | List saı | mples qualified ba | sed on the degradation of system | performance during simple analysis: | | Sample | e ID | Comments | Actions | | | | | | | - | | | | | | | | | | Action: | | | | | during | sample analyses | | mined that system performance has degraded ry Program COR any action as a result of ected the data. | | В. | Overall Assessm | ent of Data | | | List saı | mples qualified ba | sed on other issues: | | | Sample | e ID | Comments | Actions | | | | | | | | | | e_dataResults_are_valid_and_can_be_used
vn_below | | | | | | | Note: | either was not | | S analyzed on 12/28/16. The affected samples
e was left or extracted outside the method
essional judgment. | ## Action: - 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed. - 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of - the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA). - 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported: - The analysis with the lower CRQL - The analysis with the better QC results - The analysis with the higher results #### **EXECUTIVE NARRATIVE** SDG No: JC34340 Laboratory: **Accutest, New Jersey** Analysis: SW846-8015C Number of Samples: 14 Location: BMSMC, Building 5 Area Humacao, PR SUMMARY: Fourteen (14) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes. **Critical issues:** None Major: None Minor: None **Critical findings:** None **Major findings:** None Minor findings: None COMMENTS: Results are valid and can be used for
decision making purposes. Reviewers Name: Rafael Infante Chemist License 1888 Rafuel Defaut Signature: Date: January 28, 2017 ## SAMPLE ORGANIC DATA SAMPLE SUMMARY Sample ID: JC34340-1 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: Groundwater METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-2 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: Groundwater METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | • | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | | | | | | | | | Sample ID: JC34340-3 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: AQ - Field Blank Water | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | • | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | υ | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | υ | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | • | U | Yes | | Methanol | 200 | ug/i | 1.0 | - | U | Yes | Sample ID: JC34340-4 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: AQ - Equipment Blank METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | • | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | • | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-7 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | 7.7 | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-8 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|------------------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-9 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyi Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | 12 | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | 2 | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-10 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater METHOD: 8015C | WILTHOU. | 9013C | | | | | | |-------------------|--------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Ethanol | 100 | ug/l | 1.0 | • | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | • | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | • | U | Yes | Sample ID: JC34340-11 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|------------------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | υ | Yes | | n-Propyl Alcohol | 100 | ug/i | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/i | 1.0 | - | U | Yes | Sample ID: JC34340-12 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: AQ - Field Blank Water METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | • | U | Yes | Sample ID: JC34340-15 Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: AQ - Equipment Blank METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-16 Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|------------------------|----------|------------|------------| | Ethanol | 100 | ug/l | 1.0 | - | U | Yes | | Isobutyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Isopropyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Propyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | n-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | sec-Butyl Alcohol | 100 | ug/l | 1.0 | - | U | Yes | | Methanol | 200 | ug/l | 1.0 | - | U | Yes | Sample ID: JC34340-16MS Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater METHOD: 8015C | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|-----------------|----------|-------------------|------------| | Ethanol | 4400 | ug/l | 1.0 | - | - | Yes | | Isobutyl Alcohol | 4800 | ug/l | 1.0 | | - | Yes | | Isopropyl Alcohol | 4430 | ug/l | 1.0 | - | - | Yes | | n-Propyl Alcohol | 4690 | ug/l | 1.0 | 10 | - | Yes | | n-Butyl Alcohol | 4230 | ug/l | 1.0 | 1.0 | - | Yes | | sec-Butyl Alcohol | 5370 | ug/l | 1.0 | 15 | 4.75 | Yes | | Methanol | 4110 | ug/l | 1.0 | 1.4 | - | Yes | Sample ID: JC34340-16MSD Sample location: BMSMC Building 5 Area Sampling date: 12/22/2016 Matrix: Groundwater | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-------------------|--------|-------|------------------------|----------|------------|------------| | Ethanol | 5180 | ug/l | 1.0 | - | - | Yes | | Isobutyl Alcohol | 5110 | ug/l | 1.0 | - | 0.2 | Yes | | Isopropyl Alcohol | 4700 | ug/l | 1.0 | - | - | Yes | | n-Propyl Alcohol | 5200 | ug/l | 1.0 | - | - | Yes | | n-Butyl Alcohol | 4530 | ug/l | 1.0 | • | -0 | Yes | | sec-Butyl Alcohol | 5700 | ug/l | 1.0 | - | - | Yes | | Methanol | 4670 | ug/l | 1.0 | _ | - | Yes | | | Project Number:JC34340 |
--|---| | | Date:12/20-22/2016 | | | Shipping Date:12/22/2016 | | | EPA Region: 2 | | REVIEW OF VOLATILE OF The following guidelines for evaluating volatile organics were document will assist the reviewer in using professional judg serving the needs of the data users. The sample results viguidance documents in the following order of preceder Physical/Chemical Methods SW-846 (Final Update III, Decenutilized. The QC criteria and data validation actions listed orguidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest_ and the quality control and performance data summarized. The Lab. Project/SDG No.:JC34340 | RGANIC PACKAGE created to delineate required validation actions. This ment to make more informed decision and in better were assessed according to USEPA data validation nce: "Test Methods for Evaluating Solid Waste, nber 1996)," specifically for Methods 8000/8015C are on the data review worksheets are from the primary data package received has been reviewed ne modified data review for VOCs included: | | Trip blank No.: | | | X Data Completeness | X Laboratory Control Spikes | | X Holding Times | X Field Duplicates | | N/A_ GC/MS Tuning | X Calibrations | | N/A_ Internal Standard Performance | X Compound Identifications | | X Blanks | X Compound Quantitation | | X Surrogate Recoveries | X Quantitation Limits | | X Matrix Spike/Matrix Spike Duplicate | | | Overall Comments:_Low_molecular_weight_alcohol | s_by_SW-846_8015C | | | | | Definition of Qualifiers: | | | J- Estimated results | | | U- Compound not detected | | | R- Rejected data | | | UJ- Estimated nondetect | | | Rl. M. L. A | | | Reviewer: 1 2017 Date: January 28, 2017 | | | DateJanuary_20; 20111 | | ## DATA COMPLETENESS | MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED | |---------------------|---------------------|---------------| | | | ** | | | | | | - 1 | - | | | TO . | | W. | | All criteria were metX | | |------------------------|--| | Criteria were not met | | | and/or see below | | ## HOLDING TIMES The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis. Complete table for all samples and note the analysis and/or preservation not within criteria | SAMPLE ID | DATE SAMPLED | DATE ANALYZED | pН | ACTION | |--------------------|----------------------|------------------------|----------|-------------------------| | | | | | | | All samples analyz | ed within the recomn | nended method holding. | All samp | les properly preserved. | | | | | | | | | | _ | | | | | | | | | | <u> </u> | ## Criteria Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection. Cooler temperature (Criteria: 4 + 2 °C): 5.4°C ## Actions If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ) If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R). If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ). If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R). If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R). If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ). | All criteria were met _ | _N/A | |---------------------------------|------| | Criteria were not met see belov | V | # **GC/MS TUNING** | The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits | |--| | N/A_ The BFB performance results were reviewed and found to be within the specified criteria. | | N/A_ BFB tuning was performed for every 12 hours of sample analysis. | | If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected. | | List the samples affected: | | If mass calibration is in error, all associated data are rejected. | | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | #### CALIBRATION VERIFICATION Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. | | Date | e of initial calibration: | 10/10/16 | | |------|--------------|----------------------------------|-------------------------|---------------------| | | Date | es of continuing calibrat | tion:12/29/16;_12/3 | 30/16 | | | Date | es of final calibration ve | rification:10/10/10;_12 | /29/16;_12/30/16 | | | Inst | rument ID number: | GCGH | | | | Mat | rix/Level: | Aqueous/low | | | DATE | LAB FILE ID# | CRITERIA OUT
RFs, %RSD, %D, r | COMPOUND | SAMPLES
AFFECTED | | | | | <u> </u> | | | L | JAIE | LAD FILE ID# | RFs, %RSD, %D, r | COMPOUND | AFFECTED | |---|------|--------------|------------------|----------|----------| **Note:** Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns. Final calibration verification included in data packages. ## Criteria All RFs must be > 0.05 regardless of method requirements for SPCC. All %RSD must be \leq 15 % regardless of method requirements for CCC. All %Ds must be < 20% regardless of method requirements for CCC. It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment. #### Actions If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements. If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects. If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R). If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R). If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ). If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R). If any compound has r < 0.995, estimate positive results and nondetects. A separate worksheet should be filled for each initial curve | All criteria were met _ | _X_ | | |-------------------------|-----|--| | Criteria were not met | | | | and/or see below | | | ## V A. BLANK ANALYSIS RESULTS (Sections 1 & 2) The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. List the contamination in the blanks below. High and low levels blanks must be treated separately. Laboratory blanks | DATE
ANALYZED | LAB ID | LEVEL/
MATRIX | COMPOUND | CONCENTRATION UNITS | |------------------|--------------|------------------|----------|----------------------------| | All_method | | | | | | Field/Equipmen | t/Trip blank | | | | | DATE
ANALYZED | LAB ID | LEVEL/
MATRIX | COMPOUND | CONCENTRATION UNITS | | | | | | zed_with_this_data_package | | | | PP | | | | | A | | | | | All criteria were met _ | _X | |-------------------------|----| | Criteria were not met | | | and/or see below | | ## VB. BLANK ANALYSIS RESULTS (Section 3) #### **Blank Actions** Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs: ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds Specific actions are as follows: If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at
the SQL. If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration. If the concentration is ≥ SQL and > AL, report the concentration unqualified. ## Notes: High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria. | CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED
SAMPLES | |----------------------------|----------|------------|----------|-----|---------------------| - 32 | - La . | 1 | All criteria were met | _X | | |-----------------------|----|--| | Criteria were not met | | | | and/or see below | | | ## SURROGATE SPIKE RECOVERIES Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous | Matrix. Solid/aqueous | | | | | | |------------------------|------------|----------------|-------------------|--------------|--------| | SAMPLE ID | | SURRO | GATE COMPOL | JND | ACTION | | | Hexanol | DBFM | TOL-d8 | BFB | | | | S1 a S | 61 b | | | | | JC34340-1 | 102 8 | 35 | | | | | JC34340-2 | 97 7 | 7 9 | | | | | JC34340-3 | 103 8 | 37 | | | | | JC34340-4 | 100 8 | 35 | | | | | JC34340-7 | 84 7 | 7 9 | | | | | JC34340-8 | 66 6 | 31 | | | | | JC34340-9 | 76 7 | 73 | | | | | JC34340-10 | 85 8 | 32 | | | | | JC34340-11 | 82 8 | 31 | | | | | JC34340-12 | 99 8 | 31 | | | | | JC34340-15 | 91 8 | 38 | | | | | JC34340-16 | | 35 | | | | | GGH5599-BS | | 98 | | | | | GGH5599-MB2 | | 90 | | | | | GGH5600-BS | | 97 | | | | | GGH5600-MB2 | | 34 | | | | | JC34212-5MS | | 88 | | | | | JC34212-5MSD | | 35 | | | | | JC34340-16MS | | 35 | | | | | JC34340-16MSD | | 38 | | | | | GGH5599-MB1 | 86 8 | 37 | | | | | (a) Recovery from GC s | ignal #2 | (b) R | ecovery from G | C signal #1 | | | Note: All surr | ogate reco | overies within | laboratory conf | trol limits. | | | QC Limits* (Aqueous) | | | | | | | | _56_to_1 | 45to | to_ | | _to | | QC Limits* (Solid-Low) | | | | | | | LL_to_UL | to | | o to | D | to | | QC Limits* (Solid-Med) | | | | | | | LL_to_UL | to | to | to_ | | _to | 1,2-DCA = 1,2-Dichloromethane-d4 DBFM = Dibromofluoromethane TOL-d8 = Toluene-d8 BFB = Bromofluorobenzene * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit. * If QC limits are not available, use limits of 80 – 120 % for aqueous and 70 – 130 % for solid samples. ## Actions: | QUALITY | %R < 10% | %R = 10% - LL | %R > UL | |--------------------|----------|---------------|---------| | Positive results | J | J | J | | Nondetects results | R | UJ | Accept | Surrogate action should be applied: If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery. | All criteria were met_ | X_ | | |------------------------|----|--| | Criteria were not met | | | | and/or see below | | | ## VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit. ## 1. MS/MSD Recoveries and Precision Criteria The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed. List the %Rs, RPD of the compounds which do not meet the criteria. | Sample ID:JC34
Sample ID:JC34 | 212-5MS/-5MSD
340-16MS/-16MSD | | | (A) | _Groundwater/low
_Groundwater/low | |----------------------------------|----------------------------------|----------|-----------|---------------|--------------------------------------| | MS OR MSD | COMPOUND | % R | RPD | QC LIMITS | ACTION | | _MS/MSD_%_reco | overies_and_RPD_wit | hin_labo | oratory_c | ontrol_limits | | | | | | | | | #### Note: - * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit. - * If QC limits are not available, use limits of 70 130 %. ## Actions: | QUALITY | %R < LL | %R > UL | |--------------------|---------|---------| | Positive results | J | J | | Nondetects results | R | Accept | All criteria were met __X__ Criteria were not met and/or see below MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples: If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ). If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R). #### VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE MS/MSD – Unspiked Compounds It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment. If all target analytes were spiked in the MS/MSD, this review element is not applicable. List the %RSD of the compounds which do not meet the criteria. | Sample ID: | - | | Matrix/Le | vel/Unit: | | | |---------------|-----------------|-------------|--|-----------|----------|--| | COMPOUND | SAMPLE
CONC. | MS CONC. | MSD CONC. | % RSD | ACTION | | | | | | | | 1 100 | | | | | | | | · | | | | | | | | | | | | | E TENER | | | | | | | | | <u>. </u> | | <u> </u> | | | Total Control | 1. | | | | | | | E LINE | | · | | | | | #### Actions: A separate worksheet should be used for each MS/MSD pair. ^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J). ^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data. | All criteria were met _ | _X_ | _ | |-------------------------|-----|---| | Criteria were not met | | | | and/or see below | | | ## VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS This data is generated to determine accuracy of the analytical method for various matrices. 1. LCS Recoveries Criteria Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo. List the %R of compounds which do not meet the criteria | lecoveries_within_labor | ratory_control_limits |
 | |-------------------------|-----------------------|------| | | | | | | | | | | | | ## Note: - * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit. - * If QC limits are not available, use limits of 70 130 %. ## Actions: | QUALITY | %R < LL | %R > UL | |--------------------|---------|---------| | Positive results | J | J | | Nondetects results | R | Accept | All analytes in the associated sample results are qualified for the following criteria. If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R). If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R). # 2. Frequency Criteria: Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. | All criteria were
Criteria were
and/or see be | not met | | |---|-------------|--| | | | | | Matriv: | Groundwater | | FIELD/LABORATORY DUPLICATE PRECISION Sample IDs:__JC34340-7/JC34340-8___ Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled. | COMPOUND | SQL | SAMPLE CONC. | DUPLICATE CONC. | RPD | ACTION | | |---|-----|--------------|-----------------|-----|--------|--| | | | | | | | | | Field duplicates analyzed with this data package. RPD within laboratory, generally acceptable and | | | | | | | | guidance document performance criteria control limits. | | | | | | | | | Ī | | | | | | | | | | | | | | ## Actions: IX. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified. If an RPD cannot be calculated because one
or both of the sample results is not detected, the following actions apply: If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ). If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate. If both sample and duplicate results are not detected, no action is needed. | All criteria were met_ | _N/A | |------------------------|------| | Criteria were not met | | | and/or see below | | ## X. INTERNAL STANDARD PERFORMANCE The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation. List the internal standard area of samples which do not meet the criteria. - * Area of +100% or -50% of the IS area in the associated calibration standard. - * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard. | DATE | SAMPLE ID | IS OUT | IS AREA | ACCEPTABLE
RANGE | ACTION | |------|--|--|---------|---------------------|---------| | | | | | | E E | | | | | | | | | | | | | = 1 | 2 | | | | | | | | | The same of sa | | | | | | The state of s | | | | <u></u> | | | Table | | | | | | 1 | | | | | | | 1 | | | | 1807 | | | | | | | | | Actions: 1. IS actions should be applied to the compound quantitated with the out-of-control ISs | QUALITY | IS AREA < -25% | IS AREA = -25 %
TO – 50% | IS AREA > + 100% | |---------------------|----------------|-----------------------------|------------------| | Positive results | J | J | J | | Nondetected results | R | UJ | ACCEPT | 2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction. All criteria were met __X__ Criteria were not met and/or see below ____ # XII. SAMPLE QUANTITATION The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation: JC34340-16MS n-propyl alcohol $$RF = 25.71$$ [] = (143046)/(25.71) = 5,564 ppm OK All criteria were met __X__ Criteria were not met and/or see below ____ | XII. | QUANT | TATIC | M LIA | MITS | |------|---------|-------|--------|--------| | AII. | CALIMIT | | /IN LI | VIII L | # A. Dilution performed | SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION | |--|-----------------|---------------------| | | | x | | | | | | | | | | | | | | 11 12- | | | | | 1000 | == \$2.4 · · · · · · · · · · · · · · · · · · · | | 1 | | Percent Solids | | | | |----------------------|-------------------|--|----| | List samples which h | ave ≤ 50 % solids | | | | | | | 30 | | | | | | # Actions: If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$ #### **MEMORANDUM** TO: Mr. Haley Royer Anderson, Mulholland and Associates **DATE:** January 26, 2017 FROM: R. Infante FILE: JC34340 RE: Data Validation SDG: JC34340 #### **SUMMARY** Full validation was performed on the data for two groundwater samples analyzed for dissolved methane by method RSK-175. The samples were collected at the Bristol Myer Squib-Building 5 Area, Humacao, PR site on December 20-21, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC34340. The sample results were assessed according to USEPA general data validation guidance documents. In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. ### **SAMPLES** The samples included in the review are listed below | Client
Sample ID | Lab. Sample ID | Collected
Date | Matrix | Analysis | |---------------------|----------------|-------------------|-------------|----------| | MW-18 | JC34340-2 | 12/20/16 | Groundwater | Methane | | BR-2 | JC34340-9 | 12/21/16 | Groundwater | Methane | #### **REVIEW ELEMENTS** Sample data were reviewed for the following parameters, where applicable to the method - Agreement of analysis conducted with chain of custody (COC) form - Holding time and sample preservation - Gas chromatography/mass spectrometry (GC/MS) tunes - Initial and continuing calibrations - Method blanks/trip blanks/field blank - o Canister cleaning certification criteria - Surrogate spike recovery - Internal standard performance and retention times - Field duplicate results - Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results - Quantitation limits and sample results #### DISCUSSION # Agreement of Analysis Conducted with COC Request Sample reports corresponded to the analytical request designated on the chain-of-custody. ## **Holding Times and Sample Preservation** Sample preservation was acceptable. Samples analyzed within method recommended holding time. ### Initial and Continuing Calibrations Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements. ### Method Blank/Trip Blank/Field Blank Target analytes were not detected in laboratory method blanks. No trip/field/equipment blank analyzed with this data package. ## **Laboratory/Field Duplicate Results** Field duplicates were analyzed as part of this
data set. Target analytes meet the RPD performance criteria of \pm 25 % for analytes 5 x SQL. • JC34212-13/-13DUP - 21 % RPD outside the in house control limits (±14%). No action taken, duplicate RPD apply to the sample and its duplicate. Sample and its duplicate from another job. RPD within generally acceptable control limits. # LCS/LCSD Results LCS (blank spike) was analyzed by the laboratory associated with this data package. Recoveries and RPD within laboratory control limits. ## Quantitation Limits and Sample Results Dilutions were not performed. Calculations were spot checked. ## **Summary** Samples JC34340-2 and JC34340-9 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this dogument. Rafael Infante Chemist License 1888 ### SAMPLE METHANE DATA SAMPLE SUMMARY Sample ID: JC34340-2 Sample location: BMSMC Building 5 Area Sampling date: 20-Dec-16 Matrix: Groundwater METHOD: RSK -175 Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable Methane 0.48 ug/l 100 - - Yes Sample ID: JC34340-9 Sample location: BMSMC Building 5 Area Sampling date: 21-Dec-16 Matrix: Groundwater METHOD: RSK-175 Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable Methane 4.0 ug/l 20 - - Yes #### **MEMORANDUM** TO: Mr. Haley Royer **DATE:** January 28, 2017 Anderson, Mulholland and Associates FROM: R. Infante @# FILE: JC34340 RE: **Data Validation** BMSMC, Building 5 Area SM04.00.06/ Accutest Job Numbers: JC34340 ### **SUMMARY** Full validation was performed on the data for two (2) groundwater samples analyzed selected inorganics (iron - ferric and ferrous; nitate-nitrogen; nitrite-nitrogen; nitrate + nitrite - nitrogen; sulfate and sulfide). The methods employed are listed in Table 1. The samples were collected at the BMSMC, Building 5 Area, Humaco, PR site on December 20-21, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC34340. Table 1. | ANALYTE | METHOD | ANALYTE | METHOD | |--------------------------------|---------------------|--------------------------------|---------------------| | Iron, ferric* | SM3500FE B-11 | Iron, ferrous ^b | SM3500FE B-11 | | Nitrogen, nitrate ^c | EPA353.2/SM4500NO2B | Nitrogen, nitrate +
nitrite | EPA352.2/LACHAT | | Nitrogen, nitrite | SM4500NO2 B-11 | Sulfate | EPA 300/SW846-9056A | | Sulfide | SM4500S2-F-11 | | | - (a) Calculated as: (Iron) (Iron, Ferrous) - (b) Field analysis required. Received out of hold time and analyzed by request. - (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite) The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Contract Laboratory program National Functional Guidelines for Inorganic data Review (OSWER 9240.1-45, EPA 540-R-04-004, October 2004- Final), (noted herein as the "primary guidance document"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, December 1998)," and the QC requirements for the methods performed following the Standard Method guidelines are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. In general the data are valid as reported and may be used for decision making purposes. The data results are acceptable for use; some of the results were qualified. Results for ferrous and ferric iron were qualified as estimated (J) in samples: JC34340-2; and -9. Results for Nitrate + Nitrite Nitrogen qualified as estimated (J) in samples: JC34340-1. Results for Nitrite qualified as estimated (J) or UJ) in samples JC34340-2 and -9. Results for Nitrate are qualified as estimated (J) or UJ) in samples JC34340-2 and -9. #### **SAMPLES** The samples included in the review are listed below | FIELD SAMPLE ID | LABORATORY ID | ANALYSIS | |-----------------|---------------|-------------| | MW-18 | JC34340-2 | See Table 1 | | BR-2 | JC34340-9 | See Table 1 | #### **REVIEW ELEMENTS** Sample data were reviewed for the following parameters, where applicable to the method - Agreement of analysis conducted with chain of custody (COC) form - o Holding time and sample preservation - o Initial and continuing calibrations - Method blanks/trip blanks/field blank - Surrogate spike recovery - Matrix spike/matrix spike duplicate (MS/MSD) results - o Internal standard performance - o Field duplicate results - Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results - Quantitation limits and sample results ## **DISCUSSION** ## Agreement of Analysis Conducted with COC Request Sample reports corresponded to the analytical request designated on the chain-of-custody form. ## Holding Times and Sample Preservation The cooler temperatures were within the QC acceptance criteria of $4^{\circ}C \pm 2^{\circ}C$. Sample preservation was acceptable. Samples analyzed within method recommended holding time except for the following: - JC34340-2 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request. - JC34340-9 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request. - Nitrite analysis done past holding time. The samples were received and analyzed out of holding time. Note: Results for ferrous and ferric iron qualified as estimated (J). Results for are Nitrite qualified as estimated (J). Results for Nitrate are qualified as estimated (J or UJ) in samples JC34340-2 and -9. ### **Initial and Continuing Calibrations** Initial and continuing calibration meets method performance criteria. # Method Blank/Equipment Blank/Field Blank Target analytes were not detected in laboratory method blanks above the reporting limit. No field/equipment blanks analyzed as part of this data package. ## MS/MSD Matrix spike was performed. Recoveries for MS/MSD were within laboratory control limits; RPD for MS/MSD were within control limits. ## Field/Laboratory Duplicate Results Field/laboratory duplicate were analyzed as part of this data set. When no field/laboratory duplicates were analyzed, MS/MSD RPD was used to assess precision. RPD results were within laboratory/recommended control limits except for the following: - Iron, Ferrous JC34340-2 23.3 % RPD; control limit ± 20%. No action taken, low sample and duplicate concentration; < 5 x IDL. - Nitrogen, Nitrate + Nitrite JC34362-1 72.7 % RPD; control limit ± 22%. No action taken, low sample and duplicate concentration; < 5 x IDL. QC sample from another job. ### LCS/LCSD Results The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits. ## **Quantitation Limits and Sample Results** Dilutions were not required with this data set. Calculations were spot checked. Rafuel Infant ## Summary The following samples JC34340-2 and JC34340-9 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. Some of the results were qualified, the results are valid. Rafael Infante Chemist License 1888 # SAMPLE INORGANIC DATA SAMPLE SUMMARY Sample ID: JC34340-2 Sample location: BMSMC Building 5 Area Sampling date: 12/20/2016 Matrix: Groundwater | Analyte Name | Method | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-----------------------------|----------------------|--------|-------|------------------------|----------|------------|------------| | Fe | SW846-6010C | 2130 | ug/l | 1.0 | - | - | Yes | | Mn | SW846-6010C | 75 | ug/l | 1.0 | - | - | Yes | | Alkalinity, Total as CaCO3 | SM2320 B-11 | 207 | mg/l | 1.0 | - | - | Yes | | Iron, ferric | SM3500FE B-11 | 2.0 | mg/l | 1.0 | - | -J* | Yes | | Iron, ferrous | SM3500FE B-11 | < 0.20 | mg/l | 1.0 | - | | Yes | | Nitrogen, nitrate | EPA 353.2/SM4500NO2B | 0.58 | mg/l | 1.0 | - | - | Yes | | Nitrogen, nitrate + nitrite | EPA 353.2/LACHAT | 0.59 | mg/l | 1.0 | - | - | Yes | | Nitrogen, nitrite | SM4500NO2 B-11 | 0.015 | mg/l | 1.0 | - | - de | Yes | | Sulfate | EPA 300/SW846 9056A | < 10 | mg/l | 1.0 | - | U | Yes | | Sulfide | SM4500S2- F-11 | < 2.0 | mg/l | 1.0 | | U | Yes | Sample ID: JC34340-9 Sample location: BMSMC Building 5 Area Sampling date: 12/21/2016 Matrix: Groundwater | Analyte Name | Method | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |-----------------------------|----------------------|---------|-------|------------------------|----------|-------------|------------| | Fe | SW846-6010C | 3320 | ug/l | 1.0 | - | - | Yes | | Mn | SW846-6010C | 166 | ug/l | 1.0 | - | - | Yes | | Alkalinity, Total as CaCO3 | SM2320 B-11 | 289 | mg/l | 1.0 | - | - | Yes | | Iron, ferric | SM3500FE B-11 | 3.3 | mg/l | 1.0 | - | J | Yes | | Iron, ferrous | SM3500FE B-11 | < 0.20 | mg/l | 1.0 | - | 0) * | Yes | | Nitrogen, nitrate | EPA 353.2/SM4500NO2B | < 0.11 | mg/l | 1.0 | - | J | Yes | | Nitrogen, nitrate + nitrite | EPA 353.2/LACHAT | <0.10 | mg/l | 1.0 | - | - | Yes | | Nitrogen, nitrite | SM4500NO2 B-11 | < 0.010 | mg/l | 1.0 | - | - UJ | Yes | | Sulfate | EPA 300/SW846 9056A | 38.6 | mg/l | 1.0 | - | - | Yes | | Sulfide | SM4500S2- F-11 | < 2.0 | mg/l | 1.0 | - | U | Yes | | Type of validation | on Full:X
Limited:
EPA Region: 2 | Project Number:JC34340
Date:12/20-21/2016
Date shipped:12/22/16 | |---
--|--| | | · | ANALYSIS DATA PACKAGE | | sulfide, and/or of assist the review serving the need validation guida Section SOP NO Laboratory prog 45, EPA 540-R Program (CLP) validation criteria Methods SW-84 information (if a | guidelines for evaluating meta
cyanide were created to deliner
wer in using professional judgm
ds of the data users. The samp
nce documents in the following
0. HW-3b Revision 0 (July 2015
fram National Functional Guide
-04-004, October 2004- Final)
(SOP HW-2, Revision 13. B
a were derived from "Test Meth
46 (Final Update IV, 1998)". T
vailable). The QC criteria and | als analyses (6010C/6020/7000A series method ate required validation actions. This document will nent to make more informed decision and in better the results were assessed according to USEPA data order of precedence: Hazardous Waste Support ISM02 ICP-MS Data Validation; USEPA Contract Islands for Inorganic data Review (OSWER 9240.1-1. Validation of Metal for the Contract Laboratory ased on ILM05.3 (August 2009). Quality contropods for Evaluating Solid Waste, Physical/Chemical the project QAPP is reviewed for project specific data validation actions listed on the data review ument, unless otherwise noted. | | The hardcopied reviewed and to inorganic include | he quality control and perfo | st data package received has been rmance data summarized. The data review for | | No. of Samples:
Field blank No.:
Equipment blanl | G No.:JC34340
2
< No.: | | | | g Times
ations | X Laboratory DuplicatesX Field DuplicatesX Laboratory Control SamplesX ICP Serial Dilution ResultsX Detection Limits ResultsX Sample Quantitation | | Overall Commer | nts: _Fe_and_Mn_(SW846-601 | 0C) | | | | | | Definition of Qua | alifiers: | | | U- Compou
R- Rejected
UJ- Estimate | ed results
and not detected
d data
ed non-detect
ory qualifier | | | Reviewer: | Rafuel defunt | Date:01/28/2017 | | | | | | Criteria were not met and/or see below | |-------------|---------|---------------|---------------------|--| | l. | DATA | DELIVERABLE | S | | | | Α. | Data Package | e: | | | <u>MISS</u> | ING INF | ORMATION | DATE LAB. CONTACTED | DATE RECEIVED | · • • | | | | | _ | | | | | | | B, | Other Discrep | pancies: | 119 | 30,180 | | | | | | | | -44.007.9 | | | All criteria were met __X__ | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | ## **HOLDING TIMES** The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of preparation, and subsequently from the time of preparation to the time of analysis. Complete table for all samples and circle the analysis date for samples not within criteria | SAMPLE ID | DATE
SAMPLED | CYANIDE
DATE
ANALYSIS | Hg DATE
ANALYSIS | OTHERS
DATE
ANALYSIS | pН | SULFIDE | ACTION | |-----------|-----------------|-----------------------------|---------------------|----------------------------|-------|---------|------------| | | | | | | | | | | SAMPLES [| DIGESTED AN | D ANALYZE | D WITHIN T | HE METHO | D REC | OMMENDE | ED HOLDING | ## Criteria Metals - 180 days from time of collection. Mercury - 28 days from time of collection. Hexavalent Chromium (solids)- 30/7 from day of collection; 48 hrs aqueous samples Cyanide - 14 days from time of collection Sulfide - 14 days from time of collection pH measurements of aqueous samples upon receipt at the laboratory (criteria pH \leq 2 for metals; pH \geq 12 for cyanide) Actions: Qualify positive results/nondetects as follows: | If holding times are exceeded, estimate positive results (J) and rejects nondetects (R) | |---| | If pH > 2 for metals or pH < 12 for cyanide, positive results (J) and nondetects (UJ). | | Cooler Temperature (Criteria: 4°C + 2°C):5.4°C | | If cooler temperature is > 10°C, flag non-detects as (UJ) and detects as (J). | | All criteria were met _
Criteria were not met
and/or see below | _N/A | |--|-------| | Yes o | r No? | **ICP-MS TUNE ANALYSIS** Is the ICP-MS tuned prior to calibration? Does the % RSD exceeds 5% for any isotope in the tuning solution? Yes or No? #### Action: **NOTES:** For ICP-MS tunes that do not meet the technical criteria, apply the action to all samples reported from the analytical run. - 1. If the ICP-MS instrument was not tuned prior to calibration, the sample data should be qualified as unusable (R). - 2. If the tuning solution was not analyzed or scanned at least 5x consecutively or the tuning solution does not contain the required analytes spanning the analytical range, the reviewer should use professional judgment to determine if the associated sample data should be qualified. The reviewer may need to obtain additional information from the laboratory. The situation should be recorded in the Data Review Narrative and noted for Contract Laboratory Program Project Officer (CLP PO) action. - 3. If the resolution of the mass calibration is not within 0.1 u for any isotope in the tuning solution, qualify all analyte results that are ≥ Method Detection Limit (MDL) associated with that isotope as estimated (J), and all non-detects associated with that isotope as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action. - 4. If the %RSD exceeds 5% for any isotope in the tuning solution, qualify all sample results that are ≥ MDL associated with that tune as estimated (J), and all non-detects associated with that tune as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action. Table 2. ICP-MS Tune Actions for ICP-MS Analysis | ICP-MS Tune Results | Action for Samples | |--|---| | Tune not performed | Qualify all results as unusable (R) | | Tune not performed properly | Use professional judgment | | Resolution of mass calibration not within 0.1u | Qualify results that are ≥ MDL as estimated (J) | | | Qualify non-detects as estimated (UJ) | | % RSD > 5% | Qualify results that are ≥ MDL as estimated (J) | | | Qualify non-detects as estimated (UJ) | **Note:** Analytes (As) analyzed by SW846-6010 – no tuning necessary. | All criteria were met _ | _X | _ | |-------------------------|----|---| | Criteria were not met | | | | and/or see below | | | # **INSTRUMENT CALIBRATION (SECTION 1)** Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. Minimum of 2 calibration points for ICP-AES and ICP-MS; 5 points for Hg; and 4 points for cyanide. One initial calibration standard at the CRQL level for cyanide and Hg. If no, write in the non-compliance section of the data review narrative. List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration Verification standards (ICV or CCV). | Acceptance Criteria | ICV %R | CCV %R | |-------------------------|-----------|-----------| | Metals by 6010C/6020 | 100 + 10% | 100 + 10% | | Mercury/Metals by 7000s | 100 + 10% | 100 + 20% | | Cyanide | 100 + 15% | 100 + 15% | | Sulfide | 100 + 15% | 100 + 15% | | DATE | ICV/CCV# | ANALYTE | %R | ACTION | SAMPLES
AFFECTED | |---------|--------------|---------------|---------|----------------------|---------------------| | 181171 | AL AND CONTU | NUMC CALIBRA | ATION A |
 EET METHOD SPEC | IEIC CDITEDIA | | 11/11/1 | AL AND CONTI | NOING CALIBRA | TIONI | EET WETHOU SPEC | IFIC CRITERIA | | | | | | | | | | | | | | | ACTIONS: If any analyte does not meet the %R criteria, follow the actions stated below. Qualify five samples on either side of the ICV/CCV out of control limit. | Estimate positive results (J) if: Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide | ICV
111 – 125%
111 – 125%
116 – 130%
116 – 130% | CCV
111 - 125%
111 - 135%
116 - 130%
116 - 130% | |--|---|---| | Estimate positive results and nondetects (U/U). Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide | J) if:
75 – 89%
75 – 89%
70 – 84%
70 – 84% | 75 – 89%
65 – 79%
70 –
84%
70 – 84% | | Reject positive results and nondetects (R) if: Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide | <75%, >125%
<75%, >125%
<70%, >130%
<70%, >130% | <75%, >125%
<65%, >135%
<70%, >130%
<70%, >130% | | All criteria were met | X | |-----------------------|---------| | Criteria were | not met | | and/or see belov | v | - III. INSTRUMENT CALIBRATIONS (SECTIONS 2 & 3) - 2. Analytical Sequence Did the laboratory use the proper number of standards for calibration as described in the method? Yes or No B. Were calibrations performed at the beginning of each analysis? Yes or No Were calibration verification standards analyzed at the beginning of sample analysis and the proper frequency according to the method? Yes_or No D. Where the AA correlation coefficients (r) for the calibration curves ≥ 0.995? If r < 0.995, estimate positive results and nondetects (J/UJ). It is not necessary to qualify results if the laboratory used order regression. Yes or No. Data quality may be affected if any of the above answer are "no". Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the sample affected. ### 3. Other Check Standards Laboratories may analyze an additional check standard after establishing the calibration curve. This standard may contain low level concentrations of target analytes and be analyzed and evaluated by the laboratory similar to a CLP "CRLD" standard (CRI for ICP, CRA for AA, and/or mid-range standard for CN and Sulfide). A $100 \pm 20\%$ recovery acceptance limit should be used by the validator to evaluate the standard. ACTIONS: If any analyte does not meet the %R criteria, follow the action needed below. Qualify 50% of either side of the CRI/CRA out of control limits. | % R | | %R < 50% | %R | = | 50- | %R | = | 121- | %R | > | Affecte | ed Ra | nge | |----------------|------|---------------|------|---|-----|------|---|------|-------|---|---------|--------|------| | 200 | | | 79% | | | 150% | l | | 150%_ | | | | | | Qualify Positi | ve/N | ondetects Res | ults | | | | | | | | | | | | Metals | by | R/R | J/UJ | | 7 | J/A | | 100 | R/A | | <2x Cl | RI coi | nc. | | 6010C/6020 | | | 3 | | | | | | | | | | | | Hg/metals | by | R/R | J/UJ | | | J/A | | | R/A | | <1.5x | | CRI | | 7000s | | | | | | | | | | | conc. | | | | Cyanide | | R/R | J/UJ | | - 8 | J/A | | | R/A | | <1.5x | mid | std. | | - | | | 8 | | | | | | | | conc. | | | | Sulfide | | R/R | J/UJ | | | J/A | | | R/A | | <1.5x | mid | std. | | | | | | | 3 | | | | | | conc. | | | CRI is not required for AI, Ba, Ca, Fe, Mg, Na, and K. NOTE: CRLD standard within laboratory and method specific criteria. | All criteria were met | N/A | |-----------------------|---------| | Criteria were | not met | | and/or see below | | **Table 4. Calibration Actions for ICP-MS Analysis** | Calibration Result | Action for Samples | |---|---| | Calibration not performed | Qualify all results as unusable (R) | | Calibration incomplete | Use professional judgment | | | Qualify results that are ≥ MDL as estimated | | | (J) | | | Qualify non-detects as estimated (UJ) | | Not at least one calibration standard at or | Qualify results that are ≥ MDL but < 2x the | | below the CRQL for each analyte | CRQL as estimated (J) | | | Qualify non-detects as estimated (UJ) | | Correlation coefficient < 0.995; %D outside | Qualify results that are ≥ MDL as estimated | | ±30%; y-intercept ≥ CRQL | (J) | | | Qualify non-detects as estimated (UJ) | | Correlation coefficient < 0.990 | Qualify results that are ≥ MDL as estimated | | | (J) | | | Qualify non-detects as unusable (R) | | ICV/CCV %R < 75% | Qualify results that are ≥ MDL as unusable | | | (R) | | | Qualify all non-detects as unusable (R) | | ICV/CCV %R 75-89% | Qualify results that are ≥ MDL as estimated | | | low (J-) | | <u> </u> | Qualify non-detects as estimated (UJ) | | ICV/CCV %R 111-125% | Qualify results that are ≥ MDL as estimated | | | high (J+) | | ICV/CCV %R > 125% | Qualify results that are ≥ MDL as estimated | | | high (J+) | | ICV/CCV %R > 160% | Qualify results that are ≥ MDL as unusable | | | (R) | | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | | | # IV. BLANK ANALYSIS RESULTS (Sections 1 & 2) The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including equipment, field, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. List the contamination in Sections 1 & 2 below. A separate worksheet page should be used for soil and water blanks. | Laboratory blanks | | | Matrix:Aqueo | Aqueous | | |-------------------|--------------------|-------------|---------------------------|------------------------|--| | DATE
ANALYZED | ICB/CCB# | PREP
BLK | ANALYTE | CONCENTRATION
UNITS | | | | | | _above_reporting_limits | | | | Field/Equipment | | | Matrix:Aqueo | us | | | DATE
ANALYZED | EQUIPMENT
BLANK | /FIELD | ANALYTE | CONCENTRATION UNITS | | | No_field/equipn | nent_blank_an | alyzed_as_r | part_of_this_data_package | | | | | <u>-</u> | · | | | | | | | | | | | ## Table. Field/Rinsate/Trip Blank Actions for ICP-MS Analysis | Blank Result | Sample Result | Action for Samples | | |--------------|---|---|--| | > CRQL | ≥ MDL but ≤ CRQL | Report CRQL value with a "U" | | | | > CRQL but < Blank Result | Report at level of Blank Result with a "U" | | | | > Blank Result but < 10x the Blank Result | Use professional judgment to qualify results as estimated (J) | | | | | All criteria were metX
Criteria were not met
and/or see below | |----------|---|---| | IV. | BLANK ANALYSIS RESULTS (Section 3) | | | Freque | ncy requirements | | | at the f | e preparation blank analyzed for each matrix,
requency of the method?
stimate positive results < 10x IDL for which preparation blank w
than 20 samples/batch, qualification begins at the 21 st sample. | Yes or No ras not analyzed. | | B. | Was an ICB analyzed? | Yes or No | | C. | Was a CCB analyzed at the frequency stated in the method? | Yes or No | | determ | uality may be affected if any of the above answer is "no". Usine the severity of the effect and qualify the data accordingly. the samples affected. | | | | | | | | | | | | | | | | | | | Compa | FOR SOIL SAMPLES are raw sample value with blank results in ug/L unit, or t blanks analyzed during a soil case to mg/Kg in order to con | npare them with the sample | | | in ug/L x [Volume diluted to (mL)]/[Weight digested] x 1L/1000
000□g = concentration in wet weight (mg/Kg) | mL x 1000g/1Kg x | | Concer | ntration, dry weight (mg/Kg) = (Wet weight concentration)/(% So | olids) x 100 | | BLANK | (ANALYSIS RESULTS (Sections 4,5) | | | sample | ntamination remaining in the field or equipment blank will be us | | | | | | All criteria were me
Criteria were
and/or see belo | e not met | |------------------------------|-----------------------|--|--|-----------| | 4. Initia | al/Continuing Cali | bration Blanks (ICB/C | CB) Actions | | | Are all ICB/0 | CCBs less than th | e SQL? | Yes or No | | | | | either side of the ICB/0
the ICB/CCB value. | CCB out of control limits. | | | ICB/CCB# | ANALYTE | CONC/UNITS | SAMPLES AFFECTED | | | | | | | | | Are the PB I | ess than the SQL | ? | Yes or No | | | If yes, reject | t all results (R) < 1 | 10x the PB value. | | | | РВ | ANALYTE | CONC/UNITS | SAMPLES AFFECTED | | | | | | | | | BLANK ANA | ALYSIS RESULTS | S (Section 6) | | | | 6. Field | d/Equipment Blan | k (FB/EB) Actions | | | | Are | the FB/EB less th | an the SQL? | Yes or No | N/A | | If no, was th | e FB/EB value alı | ready rejected due to d | other QC criteria? Yes or No | | | If no, reject
the FB/EB v | | ss <_5x the FB/EB valu | e. Reject soil data with raw digest res | ults < 5x | | РВ | ANALYTE | CONC/UNITS | SAMPLES AFFECTED | | | | | | | | | | | | | | | All criteria were metN/A_ | | |---------------------------|-----| | Criteria were not n | net | | and/or see below | | Table 5. Calibration/Preparation Blank Actions for ICP-MS Analysis - Summary | Blank Type | Blank Result | Sample Result | Action for Samples | | | |------------------------|---------------------------|------------------------------|---|--|--| | ICB/CCB | ≥ MDL but ≤ CRQL | Non-detect No action | | | | | ≥ MDL but ≤ CRQL | , | Report CRQL value with | a "U" | | | | > CRQL | | Use professional judgme | ent | | | | ICB/CCB | > CRQL | ≥ MDL but ≤ CRQL | Report CRQL value with a "U" | | | | > CRQL but < Blank Res | sult | Report at level of Blank | Result with a "U" | | | | > Blank Result | | Use professional judgme | ent | | | | ICB/CCB | ≤ (-MDL) but
≥ (-CRQL) | ≥ MDL, or non-detect | Use professional judgment | | | | ICB/CCB | < (-CRQL) | < 10x the CRQL | Qualify results that are ≥ CRQL as estimated low (J-) Qualify non-detects as estimated (UJ) | | | | Preparation Blank | > CRQL | ≥ MDL but ≤ CRQL | Report CRQL value with a
"U" | | | | > CRQL but < 10x the B | lank Result | Qualify results as estima | Qualify results as estimated high (J+) | | | | ≥ 10x the Blank Result | | No action | | | | | Preparation Blank | ≥ MDL but ≤ CRQL | Non-detect | No action | | | | ≥ MDL but ≤ CRQL | | Report CRQL value with a "U" | | | | | > CRQL | | Use professional judgment | | | | | Preparation Blank | < (-CRQL) | < 10x the CRQL | Qualify results that are ≥ CRQL as estimated low (J-) | | | | | | | Qualify non-detects as estimated (UJ) | | | | | | | | | | | | | eria we | etX
re not met
low | |-----------------------------------|-------------|---------------------------------|------------|-------------|-----------|------------|-----------|-------------|----------|--------------------------| | INDUCTIVELY | ′ CO | UPLED PLAS | MA (ICI | P) INTER | RFEREN | CE CH | ECK SAI | //PLE | | | | The assessment a | | | | | ck sam | ple (IC | S) is to | verify | the la | boratory's | | 1. Recov | егу (| Criteria | | | | | | | | | | List any eleme
%). | nts i | n the ICS AB | and ICS | A soluti | ons whic | ch did no | ot meet t | he %R | criteria | (80 – 120 | | DATE | EL | EMENT | %R | ACTION | | SAMPL | ES AFF | CTED | | | | _Interference_ | che | ck_sample_wi | thin_me | thod_pe | formand | ce_criter | ia | | | - | | | = | : | | | _ | | | | | <u>-</u> | | | | | | | , | | | | | <u>-</u> | | ACTIONS: If an element of R | loes | not meet the %R < 50% | | eria, follo | %R | tions sta | - %R | > |] | | | Qualify Positive | e/No | ndetects Res | | | 150% | | 150% | 0 | | | | Metals
6010C/6020 | by | R/R | J/UJ | | J/A | | R/A | | | | | 2. Freque | ency | requirements | | | | | | | | | | Were interfere
(beginning of t | nce
he a | QC samples r
nalytical run)? | un at the | e frequer | ıcy state | d in the | method | Ye | s or No |) | | If no,
<u>ACTIONS:</u> Est | imat | e positive resi | ults (J) a | ill sample | es for wh | nich Al, (| Ca, Fe, N | /ig > IC: | S value | } . | | The data may qualify the data | | | | | | | | | | effect and | | | | | | | | | | | | | | | | | | | | | | | | | | | | - 4 4 | 2: —X— | 374.2 | | | | | | | | | | | | | | | | | _ | | | | | | | | | | 00000 | | | | | All criteria | were | met | N | N/A_ | | |--------------|-------|-------------------|-------|-------------|----| | | Crite | eria [,] | were | not | me | | aı | nd/or | see | belov | N | | Table 6. Interference Check Actions for ICP-MS Analysis - Summary | Interference Check Sample Results | Action for Samples | |--|---| | ICS not analyzed | Qualify detects and non-detects as unusable (R) | | ICS not analyzed in proper sequence | Use professional judgment. | | ICS %R>150% | Use professional judgment | | ICS %R > 120% (or greater than true value + 2x the CRQL) | Qualify results that are ≥ MDL as estimated high (J+) | | ICS %R 80-12-% | No qualification | | ICS %R 50-79% (or less than true value – 2x the CRQL) | Qualify results that are ≥ MDL as estimated low (J-) | | | Qualify non-detects as estimated (UJ) | | ICSAB %R < 50% | Qualify detects as estimated low (J-) and non-
detects as unusable (R) | | Potential false positives in field samples with interferents | Qualify results that are ≥ MDL as estimated high (J+) | | Potential false negatives in field samples with interferents | Qualify results that are ≥ MDL but < 10x the (negative value) as estimated low (J-) Qualify non-detects as estimated (UJ) | | | | C | were metX
Criteria were not met
for see below | |-------|------------------------|--------------------|---| | VI. | MATRIX SPIKE (MS) | | | | Sampl | e # _JC34250-2MS/-2MSD | Matrix:Groundwater | Units:ug/L | This data is generated to determine long term precision and accuracy in the analytical method for various matrices. Note that for Region 2, MS not required for: Ca, Mg, K, and Na for aqueous matrix. Al, Ca, Fe, Mg, K, Na, for soil matrix MS Recovery Criteria. List the percent recoveries for analytes which did not meet the %R criteria (75 - 125%); (85 - 115%) FOR Cr (VI)). | ANALYTE | SPIKE SAMPLE | SAMPLE | SPIKE | % R | ACTION | |---------|--------------|-----------------|-------------|----------|----------------| | | RESULT (SSR) | RESULT (SR) | ADDED | | | | | MS/MSD rec | overies and RPD | within labo | ratory c | ontrol limits. | 31522 | ACTIONS: Matrix spike actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. If the sample results \geq 4x the spike concentration, no action is taken. If any analyte does not meet the %R criteria, follow the actions stated below. Table 9. Spike Sample Actions for ICP-MS Analysis | Spike Sample Results | Action for Samples | |--|--| | Matrix Spike %R < 30% Post-digestion spike %R < 75% | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R) | | Matrix Spike %R < 30%
Post-digestion spike %R ≥ 75% | Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ) | | Matrix Spike %R 30-74% Post-digestion Spike %R < 75% | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as estimated (UJ) | | Matrix Spike %R 30-74% Post-digestion spike %R ≥ 75% | Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ) | | Matrix Spike %R > 125% Post-digestion spike %R > 125% | Qualify affected results that are ≥ MDL as estimated high (J+) | | Matrix Spike %R > 125%
Post-digestion spike %R ≤ 125% | Qualify affected results that are ≥ MDL as estimated (J) | | Spike Sample Results | Action for Samples | |--|--| | Matrix Spike %R < 30% No post-digestion spike performed | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R) | | Matrix Spike %R 30-74% No post-digestion spike performed | Qualify affected results that are ≥ MDL as estimated low (J-) and non-detects as estimated (UJ) | | Matrix Spike %R > 125% No post-digestion spike performed | Qualify affected results that are ≥ MDL as estimated high (J+) Non-detects are not qualified | # 2. Frequency Criteria A. Was a matrix spike prepared at the frequency stated in the method (1/20)? Yes or No If no, estimate positive results (J) for which analyte was not spiked. If more than 20 samples/batch, qualification begins at the 21st sample. B. Was a field blank used as spiked sample? Yes or \underline{No} If yes, estimate positive results (J) < 4x spike level added for the analyte. A separate worksheet page should be used for each matrix spike | | | | All criteria were metN/A Criteria were not met and/or see below | |------|------------------|---------|---| | VII. | FIELD DUPLICATES | | | | Samp | le #: | Matrix: | Units:_ug/L | Field duplicate samples may be taken and analyzed as an indication of overall precision. Field duplicate analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measure only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. List the concentrations and RPDs in the field duplicate pair. RPD criteria: ± 20% for aqueous; ± 35% for soil. For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in ug/L and calculate RPD or difference for each analyte. | ANALYTE | SQL
ug/L | SQL
ug/Kg | SAMPLE
RESULTS | DUPLICATE RESULTS | RPD | ACTION | |---------|--|--------------|-------------------|-------------------|-----|--------| | Al | -3 | 133 | | | | | | Sb | <u> </u> | + | | | | | | As | No field/laboratory duplicates analyzed with data set. MS/MSD % recoveries RPD used to assess precision. RPD within laboratory and generally acceptable control limits | | | | | | | Ba | | T | | | | | | Be | | | | | | | | Cd | | | | | | | | Ca | | | | | | | | Cr | | | | | | | | Co | | | | | | | | Cu | | | | | | | | Fe | | | | | | | | Pb | | | | | | | | Mg | | | | | | | | Mn | | | | | | | | Hg | | | | | | | | Ni | | | | | | | | K | | | | | | | | Se | | | | | | | | Ag | | | | | | | | Na | | | | | | | | TI | | | | | | | | V | | | | | | | | Zn | | | | | | | | Cyanide | | | | | | | | Cr(VI) | | | | | | | Field duplicate actions should be applied to only the sample and its duplicate. | All criteria were metN/A | |--------------------------| | Criteria were not met | | and/or see below | Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are nondetects, the RPD is not calculated (NC), no action is needed. Table 8. Duplicate Sample Actions for ICP-MS Analysis | Duplicate Sample Results | Action for Samples | |---
---| | Aqueous: Both original sample and duplicate sample > 5x the CRQL and 20% < RPD < 100% | Qualify those results that are ≥ CRQL as estimated (J) | | Aqueous: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 100% | Qualify those results that are ≥ CRQL as unusable (R) | | Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and 35% < RPD < 120% | Qualify those results that are ≥ CRQL as estimated (J) | | Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 120% | Qualify those results that are ≥ CRQL as unusable (R) | | Original sample or duplicate sample ≤ 5x the CRQL (including non-detects) and absolute difference between sample and duplicate > CRQL | Qualify those results that are ≥ MDL as estimated (J) and non-detects as estimated (UJ) | A separate worksheet page should be used for each laboratory duplicate analysis | | | All criteria were metX
Criteria were not met
and/or see below | |--|-------------------------------|---| | VIII. LABORATORY DUPLICATE | ES (Section 1) | | | Laboratory run duplicates samples measure of laboratory performance greater variance than water matrice duplicate samples. | e. It is also expected that s | soil duplicate results will have a | | 1. Difference Criteria | | | | List the concentrations of any analy for soil). For soil duplicates, if the % 1%, report concentrations in □g/L ar | % solids for the sample and | its duplicate differ by more than | | Sample # | Matrix: | Units: | | ANALYTE | SQL
ug/L | SQL
mg/Kg | SAMPLE
RESULTS | DUPLICATE
RESULTS | RPD | ACTION | |---------|-------------|--------------|-------------------|----------------------|-----|--------| | Al | | | | | | | | Sb | | | | | | | | As | | | | | | | | Ва | | | | | | | | Be | | | | | | | | Cd | | | | | | | | Ca | | | | | | | | Cr | | | | | | | | Co | | | | | | | | Cu | | | | | | | | Fe | | | | | | | | Pb | | | | | | | | Mg | | | | | | | | Mn | | | | | | | | Hg | ^ | | | | | | | Ni | | | | | | | | K | | | | | | | | Se | | | | | | | | Ag | | | | | | | | Na | | | | | | | | Ti | | | | | | | | V | | | | | | | | Zn | | | | | | | | Cr(VI) | | | | | | | | Sulfide | | | | | | | | Cyanide | | | | | | | Note: Laboratory duplicates actions should be applied to all other samples of the same matrix type. This qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. | All criteria were met _ | _N/A | |-------------------------|---------| | Criteria were | not met | | and/or see belov | N | <u>Actions:</u> Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are non-detects, the RPD is not calculated (NC), no action is needed. Table 8. Field Duplicate Sample Actions for ICP-MS Analysis | Sample Type | Field Duplicate Result | Action for Samples | |---------------|---|--| | Aqueous | Sample and its field duplicate
≥ 5x the CRQL and RPD >
20% | Qualify sample and its duplicate as estimated (J) | | | Sample and/or its field duplicate < 5x the CRQL and absolute difference > the CRQL | Qualify results > the MDL as estimated (J) Qualify non-detects as estimated (UJ) | | Soil/Sediment | Sample and its field duplicate
≥ 5x the CRQL and RPD >
50% | Qualify sample and its duplicate as estimated (J) | | | Sample and/or its field duplicate < 5x the CRQL and absolute difference > 2x the CRQL | Qualify results > the MDL as estimated (J) | | | | Qualify non-detects as estimated (UJ) | ## 2. Frequency Criteria A. Was a laboratory duplicate prepared at the frequency stated in the method (1/20)? Yes or No If no, estimate positive results (J) for the analyte which duplicate was not performed. If more than 20 samples/batch, qualification begins at the 21st sample. B. Was a field blank used for laboratory duplicate analysis? Yes or No If yes, estimate positive results (J) for the analyte if field blank was used for duplicate analysis. | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | # IX. LABORATORY CONTROL SAMPLE (LCS/LCSD) The assessment of the LCSs is to determine both intralaboratory contamination and matrix specific precision and accuracy. Note that for Region 2, LCS is not required for aqueous Hg and Cyanide. ### LCS Recoveries Criteria # A. Aqueous LCS/Solid LCS List any LCS recoveries not within %R criteria (80 - 120%) and the samples affected. | DATE | ELEMENT | % R | ACTION | SAMPLES AFFECTED | |-------------|----------------------|--------------|--------|------------------| | Recoveries_ | within_laboratory_co | ntrol_limits | | | | 0: - | | maker - | | | | | | | | | | | 3800,4880 | | | | | | | | | | | | | | | | ACTIONS: If analyte does not meet the %R criteria, follow the actions stated below: **Table 7. LCS Actions for ICP-MS Analysis** | LCS Result | Action for Samples | |------------|--| | %R 40-69% | Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ) | | %R > 130% | Qualify results that are ≥ MDL as estimated high (J+) | | %R 70-130% | No qualification | | %R < 40% | Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as unusable (R) | | %R > 150% | Qualify detects as unusable (R); non-
detects no qualification | | All criteria were met | X | |-----------------------|--------| | Criteria were | not me | | and/or see belov | v | # 2. Frequency Criteria A. Was a laboratory control sample prepared at the frequency stated in the method (1/20)? **Yes** or No If no, estimate positive results (J) for the analyte if LCS was not performed. If more than 20 samples/batch, qualification begins at the 21st sample. | | | | | | | 4 | Crite | ria were not met see below | |--|--|-----------|-----------|-------------------|--------------------|----------|-------------------|----------------------------| | Χ. | ICP SER | IAL DIL | AN NOITU. | IALYSIS (Se | ction 1) | | | | | | The assessment of the ICP serial dilution analysis is to determine the precision of the laboratory hrough a 5x dilution. | | | | | | of the laboratory | | | 1. | Percent I | Differen | ce (%D) C | riteria: | | | | | | sample | X Serial dilutions were performed for each matrix and results for the diluted samples analysis agreed within 10% of the undiluted analysis for the analyte concentrations < 50x MDL. | | | | | | | | | | Serial | dilutions | s were | not perfo | rmed for t | the fo | llowing ta | rget analytes: | | Serial dilutions were performed, but analytical results did not agree within 10% difference for analyte concentrations > 50x IDL before dilution. List the %Ds for analytes which did not meet the %D criteria (10%/100%) | | | | | | | | | | Sample # _ JC34250-2 Matrix:Groundwater Units:_ug/L | | | | | | | | | | ANALY | TE | IDL | 50x IDL | SAMPLE
RESULTS | SERIAL
DILUTION | %D | ACTION | | | Al | | | | | | | | | | Sb | | | | | | | | | | As | | | | | | | | | | Ва | | | | | | | | | | Ве | | | | | | | | | | Çd | | | | | | | | | | Са | | | | | | | | | | Cr | | | | | | | | | | Co | | | | | | | | | | Cu | | | | | | | | | | Fe | | | | | | | | | | Pb | | | | | | | | | | Mg | | | | | | | | | | Mn | | | | | | | | | | Hg | | | | | | | | | | Ni | | | | | | | | | | K | | | | | | | | | | Se | | | | | | | | | | Ag | | | | | | | | | | Na
Ti | | | | | | <u> </u> | | | | 1.1 | | | ! | | I | 1 | I | | Note: Serial dilution within method performance criteria. V Zn | All criteria were metX | | |------------------------|---| | Criteria were not me | þ | | and/or see below | | ACTIONS: Actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. Qualify only samples with raw results > 50x MDL. Flag results with an (E) for elements exhibiting %D > 10%. Estimate (J) positive results > 50x MDL for elements that exhibited %D > 10 but < 100. Reject (R) positive results > 50x MDL for elements which exhibited %D $\geq 100\%$. ## SERIAL DILUTION ANALYSIS (Section 2) ## 2. Frequency Criteria A. Was a serial dilution analysis prepared as required by the method? Yes or No If no, estimate positive results ≥ 50x MDL (J) for the analyte which serial dilution analysis was not performed. B. Was a field blank used for serial dilution analysis? Yes or No If yes, estimate positive results \geq 50x MDL (J) for the analyte if field blank was used for serial dilution analysis. Table 10. Serial Dilution Actions for ICP-MS Analysis | Serial Dilution Result | Action for Samples | |--|--| | Aqueous: Sample concentration > 50x MDL and 10% < %D < 100% | Qualify affected results whose raw data are > MDL as estimated (J) | | Aqueous:
Sample concentration > 50x MDL and %D ≥ 100% | Qualify affected results whose raw data are > MDL as unusable (R) | | Soil/Sediment:
Sample concentration > 50x
MDL and 15% < %D < 120% | Qualify affected results whose raw data are > MDL as estimated (J) | | Soil/Sediment:
Sample concentration > 50x MDL and %D ≥ 120% | Qualify affected results whose raw data are > MDL as unusable (R) | | Interferences present | Use professional judgment | A separate worksheet page should be used for each serial dilution analysis. | | | | were not met
below | | |----|--|------|----------------------------|--| | l. | ICP-MS INTERNAL STANDARDS | | | | | | Are internal standard added to the sample? | Ye | es_or No? | | | | Are the proper number of internal standard added to the sample? | ? Ye | es or No? | | | | Is the % Relative Intensities for all internal standards in a sample response in the calibration blank? | | 0-125% of the
es or No? | | | | Note:_ICP-OES_internal_standards_used;_relative_intensities_within_the_guidancedocument_performance_criteria | | | | All criteria were met N/A #### Action: NOTE: Apply the action to the affected analytes for each sample that does not meet the internal standard criteria. - 1. If no internal standards were analyzed with the run, the sample data should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP Project Officer (CLP PO) action. - 2. If less than five of the required internal standards were analyzed with the run, or a target analyte(s) is (are) not associated to an internal standard, the sample data, or analyte data not associated to an internal standard should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP PO action. - 3. If the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank, the sample data should not be qualified. - 4. If the %RI for an internal standard in a sample is not within the 60-125% limit, qualify the data for those analytes associated with the internal standard(s) outside the limit as follows: - a. If the sample was reanalyzed at a two-fold dilution with internal standard %RI within the limits, report the result of the diluted analysis without qualification. If the %RI of the diluted analysis was not within the 60-125% limit, report the results of the original undiluted analyses and qualify the data for all analytes that are ≥ Method Detection Limit (MDL) in the sample associated with the internal standard as estimated (UJ). - b. If the sample was not reanalyzed at a two-fold dilution, the reviewer should use professional judgment to determine the reliability of the data. The reviewer may determine that the results are estimated (J) or unusable (R). Table 11. Internal Standard Actions for ICP-MS Analysis | Internal Standard Results | Action for Samples | |---|--| | No internal standards | Qualify all results as unusable (R) | | < 5 of the required internal standards | Qualify all results as unusable (R) | | Target analyte not associated with internal standard | Qualify all analyte results not associated with an internal standard as unusable (R) | | % RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is between 60% and 125% | Do not qualify the data | | % RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is outside the 60% to 125% limit | Qualify analytes associated with the failed internal standard that are ≥ MDL as estimated (J) and qualify associated non-detects as estimated (UJ) | | Original sample not reanalyzed at 2-fold dilution | Use professional judgment Qualify sample results as estimated (J) or unusable ® | #### XII. DETECTION LIMITS RESULTS The detection limit assessment is to verify that samples results are within instrument calibration range or linear range (ICP). Instrument Detection Limits (IDL). Note IDL is not required for Cyanide. - A. IDL/MDL (or lowest quantitation limit used) results were present and found to be all levels that meet the project objectives? Yes or No - B. IDL/MDL (or lowest quantitation limit used) were not met for the following elements: - 2. Reporting Requirements - A. Were sample results on Form I (or equivalent) reported down to the IDL/MDL or lowest quantitation limit used for all analytes? Yes or No - B. Were sample weights, volumes, and dilutions taken into account when reporting results (positive and nondetects)? Yes or No If no, the reported results may be inaccurate. Request the laboratory resubmit the corrected data. - 3. Sediment Sample Percent Solids (% solids): - A. Were the % solids for any sediment samples < 50% but ≥ 10%? Yes or No If yes, estimate positive results and nondetects (J/UJ) if the % solids is 10-50%. List the affected samples:______ - B. Were the % solids for any sediment samples < 10%? Yes or No If yes, reject all results (R) if the % solid is < 10%. List the affected samples: N/A - XI. TOTAL/DISSOLVED OR INORGANIC/TOTAL ANALYTES - A. Were any analyses performed for dissolved as well as total analytes on the same sample(s)? Yes or No - B. Were any analyses performed for inorganic as well as total analytes on the same sample(s)? Yes or **No** If yes, compare the differences between dissolved (or inorganic) and total analyte concentrations. Compute each difference as a percent of the total analyte only when both of the following conditions are fulfilled: - (1) The dissolved (or inorganic) concentration is greater than total concentration, and - (2) greater than or equal to 5xMDL. | | | | metN/A
a were not met
e below | |---------------|---|---|-------------------------------------| | C. | Is any dissolved (or inorganic) concentrathan 20%? | tion greater than its total concent
Yes or <u>No</u> | ration by more | | D. | Is any dissolved (or inorganic) concentrathan 50%? | tion greater than its total concent
Yes or <u>No</u> | ration by more | | | N:
percent difference is greater than 20%
trations as estimated. If the difference is m | | | | XII. | SAMPLE QUANTITATION | | | | The sar | mple quantitation evaluation is to verify lab | oratory quantitation results. | | | | Sample results fall within the linear rang arameters. | e for ICP and within the calibratio | n range for all | | dilution | If samples results were beyond the linear performed? | range/calibration range of the ins | strument, were | | List the | affected samples/elements/dilution: | | | | In the s | space below, please show a minimum of or | ne sample calculation per method: | | | ICP/ICE | P-MS Computer printout | | | | <u>Hg/Met</u> | als by AA | | | | <u>Hexava</u> | alent Chromium | | | | Cyanide | <u>e</u> | | | | <u>Others</u> | | | | | | I samples, the following equation may be ractual sample concentrations (mg/Kg): | necessary to convert raw data valu | ues reported in | | Conc. i | n ug/L x <u>Volume diluted to, mL</u> x <u>1L</u>
Weight digested, g 1000 o | mL 1 Kg 1000 mg in wet w | tion
/eight
ng/Kg | | In addit | tion the sample results are converted to dr | y weight by using the percent solic | d calculations: | Wet weight concentration x 100 = final concentration, dry weight (mg/Kg) % solids ## **OVERALL ASSESSMENT** #### Action: - 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the QC criteria previously discussed. - 2. Write a brief Data Review Narrative to give the user an indication of the analytical limitations of the data. Note any discrepancies between the data and the Sample Delivery Group (SDG) Narrative for Contract Laboratory Program Project Officer (CLP PO) action. If sufficient information on the intended use and required quality of the data is available, the reviewer should include an assessment of the data usability within the given context. - 3. If any discrepancies are found, the laboratory may be contacted by the Region's designated representative to obtain additional information for resolution. If a discrepancy remains unresolved, the reviewer may determine that qualification of the data is warranted. | te: |
 | - | | | |-----|-----------|---|---------|--------| | |
 | | | | | - | | | | | | | | | | | | | 14 227777 | |
100 | - 1977 | #### **EXECUTIVE NARRATIVE** SDG No: JC34340 Laboratory: **Accutest, New Jersey** Analysis: SW846-8081B Number of Samples: . 0 Location: BMSMC, Building 5 Area Humacao, PR SUMMARY: Eight (8) samples were analyzed for the TCL pesticides list following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes. Critical issues: None Major: None Minor: None **Critical findings:** None Major findings: None Minor findings: 1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action taken, professional judgment. **COMMENTS:** Results are valid and can be used for decision making purposes. Reviewers Name: Rafael Infante Chemist License 1888
Signature: Date: January 28, 2017 # SAMPLE ORGANIC DATA SAMPLE SUMMARY Sample ID: JC34340-1 Sample location: BMSMC Building 5 Area Sampling date: 15-Dec-16 Matrix: AQ - Equipment Blank | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | |---------------------|--------|-------|-----------------|----------|------------|------------| | Aldrin | 0.011 | ug/l | 1 | - | U | Yes | | alpha-BHC | 0.011 | ug/l | 1 | - | U | Yes | | beta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.011 | ug/i | 1 | - | U | Yes | | gamma-BHC (Lindane) | 0.011 | ug/l | 1 | - | U | Yes | | alpha-Chlordane | 0.011 | ug/l | 1 | - | U | Yes | | gamma-Chlordane | 0.011 | ug/i | 1 | - | U | Yes | | Dieldrin | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDD | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDE | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDT | 0.011 | ug/l | 1 | - | U | Yes | | Endrin | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan sulfate | 0.011 | ug/l | 1 | - | U | Yes | | Endrin aldehyde | 0.011 | ug/l | 1 | - | U | Yes | | Endrin ketone | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-l | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-II | 0.011 | ug/l | 1 | ¥ | U | Yes | | Heptachlor | 0.011 | ug/l | 1 | 7. | U | Yes | | Heptachlor epoxide | 0.011 | ug/l | 1 | 12 | U | Yes | | Methoxychlor | 0.022 | ug/l | 1 | o. | U | Yes | | Toxaphene | 0.28 | ug/l | 1 | 9 | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | *************************************** | OD. 0001D | | | | | | |---|-----------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.011 | ug/l | 1 | - | U | Yes | | alpha-BHC | 0.011 | ug/l | 1 | - | U | Yes | | beta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.011 | ug/l | 1 | • | U | Yes | | gamma-BHC (Lindane) | 0.011 | ug/l | 1 | - | Ų | Yes | | alpha-Chlordane | 0.011 | ug/l | 1 | - | U | Yes | | gamma-Chlordane | 0.011 | ug/l | 1 | • | U | Yes | | Dieldrin | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDD | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDE | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDT | 0.011 | ug/l | 1 | • | U | Yes | | Endrin | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan sulfate | 0.011 | ug/i | 1 | - | U | Yes | | Endrin aldehyde | 0.011 | ug/l | 1 | - | U | Yes | | Endrin ketone | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-I | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-II | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor epoxide | 0.011 | ug/l | 1 | - | Ų | Yes | | Methoxychlor | 0.022 | ug/l | 1 | - | U | Yes | | Toxaphene | 0.28 | ug/l | 1 | - | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | | D. 00012 | | | | | | |---------------------|----------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.010 | ug/l | 1 | - | U | Yes | | alpha-BHC | 0.010 | ug/l | 1 | - | U | Yes | | beta-BHC | 0.010 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.010 | ug/l | 1 | - | U | Yes | | gamma-BHC (Lindane) | 0.010 | ug/l | 1 | - | U | Yes | | alpha-Chlordane | 0.010 | ug/l | 1 | - | U | Yes | | gamma-Chlordane | 0.010 | ug/l | 1 | - | U | Yes | | Dieldrin | 0.010 | ug/l | 1 | - | U | Yes | | 4,4'-DDD | 0.010 | ug/l | 1 | - | U | Yes | | 4,4'-DDE | 0.010 | ug/l | 1 | - | U | Yes | | 4,4'-DDT | 0.010 | ug/l | 1 | - | U | Yes | | Endrin | 0.010 | ug/l | 1 | - | U | Yes | | Endosulfan sulfate | 0.010 | ug/l | 1 | - | U | Yes | | Endrin aldehyde | 0.010 | ug/l | 1 | - | U | Yes | | Endrin ketone | 0.010 | ug/l | 1 | - | U | Yes | | Endosulfan-I | 0.010 | ug/l | 1 | - | U | Yes | | Endosulfan-II | 0.010 | ug/l | 1 | - | U | Yes | | Heptachlor | 0.010 | ug/l | 1 | - | U | Yes | | Heptachlor epoxide | 0.010 | ug/l | 1 | - | U | Yes | | Methoxychlor | 0.020 | ug/l | 1 | - | U | Yes | | Toxaphene | 0.25 | ug/l | 1 | 7.0 | U | Yes | | | | | | | | | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | IVIETIN | DD. 6061B | | | | | | |---------------------|-----------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.011 | ug/l | 1 | - | U | Yes | | alpha-BHC | 0.011 | ug/l | 1 | - | U | Yes | | beta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.011 | ug/l | 1 | • | U | Yes | | gamma-BHC (Lindane) | 0.011 | ug/l | 1 | - | U | Yes | | alpha-Chlordane | 0.011 | ug/l | 1 | - | U | Yes | | gamma-Chlordane | 0.011 | ug/l | 1 | - | Ų | Yes | | Dieldrin | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDD | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDE | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDT | 0.011 | ug/l | 1 | - | U | Yes | | Endrin | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan sulfate | 0.011 | ug/l | 1 | - | U | Yes | | Endrin aldehyde | 0.011 | ug/l | 1 | - | Ų | Yes | | Endrin ketone | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-I | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-II | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor epoxide | 0.011 | ug/l | 1 | - | U | Yes | | Methoxychlor | 0.022 | ug/l | 1 | - | U | Yes | | Toxaphene | 0.28 | ug/l | 1 | - | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | WILTHOU | . 00010 | | | | | | |---------------------|---------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.011 | ug/l | 1 | - | U | Yes | | alpha-BHC | 0.011 | ug/l | 1 | - | U | Yes | | beta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | gamma-BHC (Lindane) | 0.011 | ug/l | 1 | 2 | U | Yes | | alpha-Chlordane | 0.011 | ug/l | 1 | * | U | Yes | | gamma-Chlordane | 0.011 | ug/l | 1 | - | U | Yes | | Dieldrin | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDD | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDE | 0.011 | ug/l | 1 | | U | Yes | | 4,4'-DDT | 0.011 | ug/l | 1 | - | U | Yes | | Endrin | 0.011 | ug/l | 1 | * | U | Yes | | Endosulfan sulfate | 0.011 | ug/l | 1 | - | U | Yes | | Endrin aldehyde | 0.011 | ug/l | 1 | - | U | Yes | | Endrin ketone | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-I | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-II | 0.011 | ug/l | 1 | • | U | Yes | | Heptachlor | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor epoxide | 0.011 | ug/l | 1 | - | U | Yes | | Methoxychlor | 0.022 | ug/l | 1 | - | U | Yes | | Toxaphene | 0.28 | ug/l | 1 | - | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: AQ - Field Blank Water | Analyte Name | Result | Unite | Dilution Factor | Lah Flag | Validation | Reportable | |---------------------|--------|-------|-----------------|----------|------------|------------| | Aldrin | 0.011 | ug/l | 1 | - | U | Yes | | | | | 1 | | U | Yes | | alpha-BHC | 0.011 | ug/l | _ | - | • | | | beta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | delta-BHC | 0.011 | ug/l | 1 | - | U | Yes | | gamma-BHC (Lindane) | 0.011 | ug/l | 1 | • | U | Yes | | alpha-Chlordane | 0.011 | ug/i | 1 | - | U | Yes | | gamma-Chlordane | 0.011 | ug/l | 1 | - | U | Yes | | Dieldrin | 0.011 | ug/l | 1 | - | U | Yes | | 4,4¹-DDD | 0.011 | ug/l | 1 | - | U | Yes | | 4,4¹-DDE | 0.011 | ug/l | 1 | - | U | Yes | | 4,4'-DDT | 0.011 | ug/l | 1 | - | U | Yes | | Endrin | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan sulfate | 0.011 | ug/l | 1 | - | U | Yes | | Endrin aldehyde | 0.011 | ug/l | 1 | - | U | Yes | | Endrin ketone | 0.011 | ug/l | 1 | 7. | U | Yes | | Endosulfan-I | 0.011 | ug/l | 1 | - | U | Yes | | Endosulfan-il | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor | 0.011 | ug/l | 1 | - | U | Yes | | Heptachlor epoxide | 0.011 | ug/l | 1 | - | U | Yes | | Methoxychlor | 0.022 | ug/l | 1 | - | Ų | Yes | | Toxaphene | 0.28 | ug/l | 1 | - | U | Yes | Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | |---|--------|-------|------------------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.26 | ug/l | 1 | - | - | Yes | | alpha-BHC | 0.28 | ug/l | 1 | - | - | Yes | | beta-BHC | 0.27 | ug/l | 1 | - | - | Yes | | delta-BHC | 0.30 | ug/l | 1 | - | - | Yes | | gamma-BHC (Lindane) | 0.29 | ug/l | 1 | - | - | Yes | | alpha-Chlordane | 0.39 | ug/l | 1 | - | - | Yes | | gamma-Chlordane | 0.29 | ug/i | 1 | | - | Yes | | Dieldrin | 0.30 | ug/l | 1 | - | - | Yes | | 4,4'-DDD | 0.30 | ug/l | 1 | | - | Yes | | 4,4'-DDE | 0.25 | ug/l | 1 | - | - | Yes | | 4,4'-DDT | 0.16 | ug/l | 1 | - | - | Yes | | Endrin | 0.29 | ug/l | 1 | 1.5 | - | Yes | | Endosulfan sulfate | 0.29 | ug/l | 1 | - | - | Yes | | Endrin aldehyde | 0.30 | ug/l | 1 | - | - | Yes | | Endrin ketone | 0.28 | ug/l | 1 | - | - | Yes | | Endosulfan-l | 0.29 | ug/l | 1 | 5 | - | Yes | | Endosulfan-II | 0.30 | ug/l | 1 | 20 | | Yes | | Heptachlor | 0.27 | ug/l | 1 | 75 | - | Yes | | Heptachlor epoxide | 0.29 | ug/l | 1 | D; | | Yes | | Methoxychlor | 0.26 | ug/l | 1 | - | - | Yes | | Toxaphene | ND | ug/l | 1 | 2 | 12 | Yes | Sample ID: JC34340-16MSD Sample location: BMSMC Building 5 Area Sampling date: 22-Dec-16 Matrix: Groundwater | WIETTIOD | . 00015 | | | | | | |---------------------|---------|-------|-----------------|----------|------------|------------| | Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable | | Aldrin | 0.26 | ug/l | 1 | - | - | Yes | | alpha-BHC | 0.28 | ug/l | 1 | - | - | Yes | | beta-BHC | 0.27 | ug/l |
1 | - | - | Yes | | delta-BHC | 0.31 | ug/l | 1 | - | • | Yes | | gamma-BHC (Lindane) | 0.29 | ug/l | 1 | - | | Yes | | alpha-Chlordane | 0.38 | ug/l | 1 | 2 | - | Yes | | gamma-Chlordane | 0.29 | ug/l | 1 | - | - | Yes | | Dieldrin | 0.30 | ug/l | 1 | - | - | Yes | | 4,4'-DDD | 0.32 | ug/l | 1 | - | - | Yes | | 4,4'-DDE | 0.26 | ug/l | 1 | 27 | - | Yes | | 4,4'-DDT | 0.160 | ug/l | 1 | - | - | Yes | | Endrin | 0.29 | ug/l | 1 | - | - | Yes | | Endosulfan sulfate | 0.30 | ug/l | 1 | - | | Yes | | Endrin aldehyde | 0.27 | ug/i | 1 | - | - | Yes | | Endrin ketone | 0.28 | ug/l | 1 | - | - | Yes | | Endosulfan-I | 0.30 | ug/l | 1 | - | - | Yes | | Endosulfan-II | 0.31 | ug/l | 1 | - | - | Yes | | Heptachlor | 0.27 | ug/l | 1 | - | - | Yes | | Heptachlor epoxide | 0.29 | ug/l | 1 | #1 | * | Yes | | Methoxychlor | 0.25 | ug/l | 1 | - | - | Yes | | Toxaphene | ND | ug/l | 1 | ÷: | - | Yes | | | Project/Case Number:JC34340
Sampling Date:12/21-22/2016
Shipping Date:12/22/2016
EPA Region No.:2 | |--|---| | REVIEW OF PESTICIDE | ORGANIC PACKAGE | | The following guidelines for evaluating vorequired validation actions. This document woudgment to make more informed decision ausers. The sample results were assessed action actions in the following order of precedent AW-36A, Revision 0, June, 2015. SOM02.2. Pedata validation actions listed on the data guidance document, unless otherwise noted. | will assist the reviewer in using professional and in better serving the needs of the data according to USEPA data validation guidance ace Hazardous Waste Support Section SOP No. esticide Data Validation. The QC criteria and review worksheets are from the primary | | The hardcopied (laboratory name) _Accutesteviewed and the quality control and performance data | | | Lab. Project/SDG No.:JC34340 | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits | | | | | | Compound not detected
Estimated nondetect | # DATA COMPLETENESS | MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED | |---------------------|---------------------|---------------| | 1 | | | | | | <i>3</i> = 0: | | | | | | | | | | - | | | | | | | | | | | | | ». | | | | 9 | | | | | <u> </u> | 1000 | | | | | | - | <u> </u> | | | | | | | | | | | | | 1 | | | | - | | | A | | | | | 7 | | | | Ay_ | | | | | | | | | | 1019-35 | | | | | | | | All criteria were met _ | _X | |-------------------------|----| | Criteria were not met | | | and/or see below | | #### HOLDING TIMES The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis. Complete table for all samples and note the analysis and/or preservation not within criteria | SAMPLE ID | DATE
SAMPLED | DATE
EXTRACTED/ANALYZED | ACTION | |------------------|-----------------------|-------------------------------|-----------------------------| | Samples properly | preserved. All sample | es extracted and analyzed wit | thin the required criteria. | | | | | | | | | | | | | | | | | .= | | | | | | | | | | | | | | | N. | \sim | • | | |----|--------|-----|--| | 11 | L PI | 160 | | # <u>Criteria</u> Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis. Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis. Cooler temperature (Criteria: 4 ± 2 °C): 5.4°C - OK ## <u>Actions</u> Qualify aqueous sample results using preservation and technical holding time information as follows: - a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). - b. If there is no evidence that the samples were properly preserved (T = 4°C \pm 2°C), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). - c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary. - d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data. - e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade. - f. If technical holding times are grossly exceeded, use professional judgment to qualify the data. # Qualify non-aqueous sample results using preservation and technical holding time information as follows: - a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). - b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). - c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary. - d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data. - e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade. - f. If technical holding times are grossly exceeded, use professional judgment to qualify the data. | All criteria were met; | <u> </u> | |---------------------------------|----------| | Criteria were not met see below | | GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5) #### 1. Resolution Check Mixture #### Criteria Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column? Yes? or No? Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%? Yes? or No? Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists. # Action - a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ). - b. Qualify non-detected compounds as unusable (R). # 2. Performance Evaluation Mixture (PEM) Resolution Criteria #### Criteria Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)? Yes? or No? ## Action a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R). #### Criteria Is PEM % Resolution < 90%? Yes? or No? #### Action - a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ). - b. Qualify non-detected compounds as unusable (R). | All criteria were met | _X_ | _ | |---------------------------------|-----|---| | Criteria were not met see below | | | # 3. PEM 4,4'-DDT Breakdown Criteria Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected? Yes? or No? Action a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J) Criteria Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected Yes? or No? Action - a. Qualify non-detects for 4,4'- DDT as unusable (R) - b. Qualify detects for 4,4'-DDD as tentatively identified (NJ) - c. Qualify detects for 4,4'-DDE as tentatively identified (NJ) #### 4. PEM Endrin Breakdown Criteria Is the PEM Endrin % Breakdown >20.0% and Endrin is detected? Yes? or No? Action a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J) Criteria Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected Yes? or No? Action - a. Qualify non-detects for Endrin as unusable (R) - b. Qualify detects for Endrin aldehyde as tentatively identified (NJ) - c. Qualify detects for Endrin ketone as tentatively identified (NJ) | All criteria were met | X | |---------------------------------|---| | Criteria were not met see below | | # 5. Mid-point Individual Standard Mixture Resolution - ## Criteria Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column? Yes? or No? Is the
resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%? Yes? or No? Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists. ## Action - a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ). - b. Qualify non-detected compounds as unusable (R). ## Criteria Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)? Yes? or No? # Action a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R). | All criteria were met_ | _X | _ | |------------------------|----|---| | Criteria were not met | | | | and/or see below | | | # CALIBRATION VERIFICATION Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. | Date of initial calibration: | 11/15/16 | |-----------------------------------|---| | Dates of initial calibration veri | fication:12/15/16 | | Dates of continuing calibratio | n:01/03/17;_01/04/17 | | Dates of final calibration | *************************************** | | Instrument ID numbers: | GCG8 | | Matrix/Level: | Aqueous/low | | | | | DATE | LAB | FILE | CRITERIA OUT | COMPOUND | SAMPLES AFFECTED | |--|-----|------|------------------|----------|---------------------------| | | ID# | | RFs, %RSD, %D, r | | | | | | | | | | | | | | | | ent performance criteria. | | Continuing calibration % differences meet the performance criteria in the two columns. Final | | | | | | | calibration verification included in data package. | # Criteria Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015? Yes? or No? ## **Actions** If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data ## Criteria Are RT Windows calculated correctly? Yes? or No? ## Action Recalculate the windows and use the corrected values for all evaluations. ## Criteria Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC? Yes? or No? | All criteria were met _ | _X | _ | |-------------------------|----|---| | Criteria were not met | | | | and/or see below | | | Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No? Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed? Yes? or No? Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%. Yes? or No? #### Action - a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds. - b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary # **Continuing Calibration Checks** #### Criteria Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No? Action - a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R). - b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R). - c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R). ## Criteria Is the Percent Difference (%D) within ±25.0% for the PEM sample? Yes? or No? #### Action a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ). #### Criteria For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No? #### Action Qualify associated detects as estimated (J) and non-detects as estimated (UJ). ## Criteria Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected? Yes? or No? ## Action - a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J) - b. Non-detected associated compounds are not qualified ## Criteria Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected Yes? or No? ## Action - a. Qualify non-detects for 4,4'- DDT as unusable (R) - b. Qualify detects for 4,4'-DDD as tentatively identified (NJ) - c. Qualify detects for 4,4'-DDE as tentatively identified (NJ) #### Criteria Is the PEM Endrin % Breakdown >20.0% and Endrin is detected? Yes? or No? ## Action - a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J) - b. Non-detected associated compounds are not qualified #### Criteria Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected Yes? or No? #### Action - a. Qualify non-detects for Endrin as unusable (R) - b. Qualify detects for Endrin aldehyde as tentatively identified (NJ) - c. Qualify detects for Endrin ketone as tentatively identified (NJ) | All criteria were metX | |------------------------| | Criteria were not met | | and/or see below | # BLANK ANALYSIS RESULTS (Sections 1 & 2) The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. | List the contami | nation in the bla | ınks below. Hig | h and low levels blanks | must be treated separately. | |------------------|-------------------|------------------|-------------------------|------------------------------| | CRQL concentra | ationN | 'A | D-11 | | | Laboratory blan | ks | | | | | DATE
ANALYZED | LAB ID | LEVEL/
MATRIX | COMPOUND | CONCENTRATION UNITS | | _ug/L | | 3 TA 150 | | nit_of_0.01,_0.02,_and_0.25_ | | Field/Equipme | | LEVEL/ | COMPOUND | CONCENTRATION | | ANALYZED | LADID | MATRIX | | UNITS | | | | | | | | | | | | | | All criteria were met | _X_ | | |-----------------------|-----|--| | Criteria were not met | | | | and/or see below | _ | | # BLANK ANALYSIS RESULTS (Section 3) #### **Blank Actions** Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs: The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method. Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks. Specific actions are as follows: # **Blank Actions for Pesticide Analyses** | Blank Type | Blank Result | Sample Result | Action for Samples | |---|---------------------|----------------------------------|--| | | Detects | Not detected | No qualification required | | | < CRQL | < CRQL | Report CRQL value with a U | | | | ≥ CRQL | No qualification required | | Method, Sulfur | | < CRQL | Report CRQL value with a U | | Cleanup,
Instrument, Field,
TCLP/SPLP | > CRQL | ≥ CRQL and ≤ blank concentration | Report blank value for sample concentration with a U | | | | ≥ CRQL and > blank concentration | No qualification required | | | = CRQL | ≤CRQL | Report CRQL value with a U | | | | > CRQL | No qualification required | | | Gross contamination | Detects | Report blank value for sample concentration with a U | | All criteria were met _ | _X_ | | |-------------------------|-----|--| | Criteria were not met | | | | and/or see below | _ | | | CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED SAMPLES | |----------------------------|----------|------------|----------|-----|------------------| , | All criteria were met_ | _X_ | | |------------------------|-----|---| | Criteria were not met | | | | and/or see below | | _ | # SURROGATE SPIKE RECOVERIES Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. b List the percent recoveries (%Rs)
which do not meet the criteria for surrogate recovery. | Matrix:_Aqueou | s | | | | | |--|------------|------|--------|----------|----| | Lab | Lab | | | | | | Sample ID | File ID | S1 a | S1 b | S2 a | S2 | | JC34340-15 | 8G1635.D | 96 | 100 | 30 | 29 | | JC34340-16 | 8G1631.D | 91 | 91 | 80 | 70 | | JC34340-18 | 8G1664.D | 96 | 102 | 49 | 47 | | JC34340-19 | 8G1665.D | 81 | 87 | 59 | 59 | | JC34340-20 | 8G1666.D | 103 | 110 | 79 | 73 | | JC34340-21 | 8G1667.D | 90 | 95 | 61 | 57 | | OP99539-BS1 | 8G1630.D | 97 | 100 | 58 | 50 | | OP99539-MB1 | 8G1629.D | 90 | 91 | 45 | 41 | | OP99539-MS | 8G1632.D | 97 | 96 | 63 | 49 | | OP99539-MSD | 8G1633.D | 94 | 94 | 75 | 63 | | Surrogate Comp | oounds | | Recov | ery Limi | ts | | S1 = Tetrachlor | o-m-xylene | | 26-132 | 2% | | | S2 = Decachlor | obiphenyl | | 10-11 | 3% | | | (a) Recovery from (b) Recovery from (c) | • | | | | | Note: Surrogate recoveries within laboratory control limits. #### Actions: - a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+). - b. Do not qualify non-detected target compounds for surrogate recovery > 150 %. - c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary. - d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-). - e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ). - f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor: - i. Qualify detected target compounds as biased low (J-). - ii. Qualify non-detected target compounds as unusable (R). - g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data. - h. If surrogate RTs are within RT windows, no qualification of the data is necessary. - i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes. # Summary Surrogate Actions for Pesticide Analyses | | Ac | tion* | |---|------------------------------|----------------------------------| | Criteria | Detected Target
Compounds | Non-detected Target
Compounds | | %R > 150% | J+ | No qualification | | 30% < %R < 150% | No qua | alification | | 10% < %R < 30% | J- | UJ | | %R < 10% (sample dilution not a factor) | J- | R | | %R < 10% (sample dilution is a factor) | Use profess | ional judgment | | RT out of RT window | Use profess | ional judgment | | RT within RT window | No qua | alification | Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes. | All criteria were met | _X | _ | |-----------------------|----|---| | Criteria were not met | | | | and/or see below | | | # MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit. 1. MS/MSD Recoveries and Precision Criteria Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region. NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified. | List the %Rs, | , RPD of the | compounds | which do | not meet | the criteria. | |---------------|--------------|-----------|----------|----------|---------------| |---------------|--------------|-----------|----------|----------|---------------| | Sample ID: | _JC34340-16MS/MSD | Matrix/Level:_ | _Groundwater | |------------|-------------------|----------------|--------------| | • | | | | **Note:** MS/MSD % recoveries and RPD within laboratory control limits. #### Action No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. A separate worksheet should be used for each MS/MSD pair. | All criteria were met _ | _X | | |-------------------------|----|--| | Criteria were not met | | | | and/or see below | | | # LABORATORY CONTROL SAMPLE (LCS) ANALYSIS This data is generated to determine accuracy of the analytical method for various matrices. # 1. LCS Recoveries Criteria | LCS Spike Compound | Recovery Limits (%) | |----------------------------------|---------------------| | gamma-BHC | 50 – 120 | | Heptachlor epoxide | 50 – 150 | | Dieldrin | 30 – 130 | | 4,4'-DDE | 50 – 150 | | Endrin | 50 – 120 | | Endosulfan sulfate | 50 – 120 | | trans-Chlordane | 30 – 130 | | Tetrachloro-m-xylene (surrogate) | 30 – 150 | | Decachlorobiphenyl (surrogate) | 30 – 150 | | | LCS ID | COMPOUND | % R | QC LIMIT | |---|-------------|-------------------------------|-------------------|----------| | % | _recovery_a | nd_RPD_within_laboratory_ | _control_limits | | | | _1000ve1y_a | ind_tti D_witilit_laboratory_ | _00111101_1111113 | | #### Action The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria. - a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds. - b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R). - c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS. - d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound. e. If the LCS recovery is within allowable limits, no qualification of the data is necessary. # 2. Frequency Criteria: Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. | All criteria were met | | |-----------------------|--| | Criteria were not met | | | and/or see belowN/A | | ## FLORISIL CARTRIDGE PERFORMANCE CHECK NOTE: Florisil cartridge cleanup is mandatory for all extracts. #### Criteria Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent? Yes? or No? N/A #### Criteria Are the results for the Florisil Cartridge Performance Check solution included with the data package? Yes? or No? N/A Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows: ## Action: - a. If the
Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds. - b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary. - c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ). - d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify nondetected target compounds as unusable (R). - e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram. Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results. Note: No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment. | All criteria were met_ | N/A | |------------------------|-----| | Criteria were not met | | | and/or see below | | # GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK NOTE: GPC cleanup is mandatory for all soil samples. If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria. #### Action: - a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J). - b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R). - c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ). - d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary. - e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds. Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results. Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment. | All criteria were met | _X | | |-----------------------|----|--| | Criteria were not met | | | | and/or see below | | | ## TARGET COMPOUND IDENTIFICATION #### Criteria: - 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns? Yes? or No? - 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration? Yes? or No? - 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %? Yes? or No? - 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor? Yes? or No? - 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale. Yes? or No? - 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A - 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB? Yes? or No? - 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package. Yes? or No? ## Action: - a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected. - b. Use professional judgment to assign an appropriate quantitation limit using the following quidance: - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value. - ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R). - c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included. Note: State in the Data Review Narrative all conclusions made regarding target compound identification. - d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data. - e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines. - f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N). # GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R). ## Action: - a. If the quantitative criteria for both columns were met (\geq 5.0 ng/µL for SCPs and \geq 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance: - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C". - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X". | All criteria were met _ | _X | |-------------------------|-----| | Criteria were not met | | | and/or see below | -10 | # COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS) The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation: ## Action: - a. If sample quantitation is different from the reported value, qualify result as unusable (R). - b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample. - c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample. - d. Results between the MDL and CRQL should be qualified as estimated (J). - e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported. - f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table). # Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples | Criteria | Action | | | |--------------------------
-------------------------------|-----------------------------------|--| | | Detected Associated Compounds | Non-detected Associated Compounds | | | % Moisture < 70.0 | No qualification | | | | 70.0 < % Moisture < 90.0 | J | UJ | | | % Moisture > 90.0 | J | R | | | 7 . 10 | | | |--------|--|--| Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data. # Dilution performed | SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION | |-----------|-----------------|---| | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | N. C. | All criteria were metN/A | | |--------------------------|---| | Criteria were not met | | | and/or see below | _ | ## FIELD DUPLICATE PRECISION NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken. Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary. | Sample IDs | : — | | Ma | trix: | <u> </u> | |--|-------------|-----------------|--------------------|-------|----------| | COMPOUND | SQL
ug/L | SAMPLE
CONC. | DUPLICATE
CONC. | RPD | ACTION | | | | | | | | | | | | | | <u></u> | | No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within the required criteria of < 50 %. | ## Actions: - a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified. - b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply: - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ). - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate. - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate. - iv. If both sample and duplicate results are not detected, no action is needed. # OVERALL ASSESSMENT OF DATA Action: - 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed. - 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA). Overall assessment of the data: Results are valid; the data can be used for decision making purposes.